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/

I SUMMARY

In this study, / searched for evidence of a strange attractor associated

with the saturation of middle atmosphere gravity waves in the echo data from

a partial reflection radar located in Saskatoon, Canada. Theiler's extension of

the Grassberger-Procaccia correlation integral algorithm was used to estimate

the fractal dimension of the attractor.

Chaotic regimes have been observed in\ experimental fluid studies of the

transition from ordered to turbulent behavior.6'Breaking gravity waves are

thought to decay to turbulence, transporting momentum from the lower to
upper atmosphere.- xtending f-resuts-froni7 laboratory,, udiet'omddle

atmosphere gravity waves, it seems reasonable to expect to find a strange

attractor in gravity wave saturation.

Echo data was analyzed because it offered a high sampling rate. The

Grassberger-Procaccia algorithm places stringent requirements upon the

amount of data necessary to obtain an accurate estimate of the system

dimension; a large number of points is required.

We did not detect a strange attractor with dimension <3 in the data from

the Saskatoon partial reflection radar for the time scales (6 min 39 s) which

were studied.-, Because of the small number of points which were examined,we

can not asseri that there was only noise in the data. However, the supporting
/evidence fRom the power spectra suggest that we mainly investigated time

scales in the viscous and inertial regions.
S/

6 This study can not assert that a strange attractors is absent in gravity

wave absorption. i data requirements to implement the Grassberger '2 "

Procaccia algorithm make it unlikely that such an attractor, if it exists, will be

detected. Calculations of the amount of data necessary to estimate the

dimension Jindicate that over 6 hours of data would be required to detect a

strange attractor in gravity wave absorption.
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1-2

- -4



CHAPTER I

INTRODUCTION

In the last 10 years, MLT (mesosphere, lower thermosphere) radars

have been increasingly important in the observation of the middle

atmosphere 1 . During this same period, gravity waves and gravity wave

saturation have been recognized as playing a vital role in the maintenance

and modification of the mesospheric circulation and temperature distribution

(Fritts, 1984). In addition, this same period also saw great advances in the area

popularly referred to as "chaos theory".

Chaotic behavior (or the presence of strange attractors 2) has been

observed in experimental studies of the transition from laminar to turbulent

fluid flow (see Swinney (1983) for a review of early experimental results for

different systems). Gravity waves undergoing saturation 3 break down; the end

product is turbulence. Techniques have been developed to determine the

presence and dimension of a strange attractor in a set of data (Grassberger and

Procaccia, 1983, 1984). It does not seem unreasonable to expect to find a strange

attractor associatei with the saturation of middle atmosphere gravity waves.

Saturatic. ol middle atmosphere gravity waves has been inferred from

theory and :-direct observations. Gravity wave saturation currently provides

the only known mechanism for the observed structure of the mesospheric

1 In this thesis, the commonly accepted definition of the middle atmosphere,
i.e., that region of the atmosphere which encompasses the stratosphere and
mesosphere, will be used. This definition roughly includes the region of the
atmosphere from 10 to 100 km.
2 An attractor is defined as "strange" if its phase space trajectories diverge
exponentially on the average.
3 The term "gravity wave saturation" refers to any process that acts to limit or
mainain constant wave amplitudes with height.

a | w d i" " "" ml1



circulation (most :mportantly, the closing of the mesospheric jets) and the

observed temperature structure. Examples of the indirect evidence of gravity

wave saturation include observations of regions of enhanced turbulent

diffusion, measurements of super-adiabatic lapse rates in the mesosphere and

lower thermosphere and measurements of momentum drag in the mesosphere

(see Fritts (1984) for a detailed description and list of references for these

different observations). The most direct evidence comes from the observations

of Kelvin-Helmholtz billows near the summer mesopause, as revealed in the

perturbation of noctilucent clouds.

Chaos theory has provided some insights into the transition of fluid

flows from orderly to turbulent regimes. Traditional analysis of meteorological

data has centered on the search for wavelike or periodic behavior. Tools such

as Fourier analysis yield no meaningful results when applied to aperiodic

signals. Irregular or aperiodic signals usually are filtered out or deemed noise.

This noise may hide the presence of a strange attractor within the data. As

Froehling et al., (1981) point out, "power spectral analysis, for example,

characterizes aperiodic behavior by the presence of broadband noise in the

power spectrum, but broadband noise can be produced by systems requiring

either a small or large number of phase space dimensions." 4

The technique of Grassberger and Procaccia (1983, 1984) has been used

to examine various experimental data sets. Atmanspacher et al. (1988)

employed the correlation integral technique of Grassberger and Procaccia to

examine the chaotic attractor associated with X-ray counts from the neutron

star Her X-1. Tsonis and Eisner (1988) employed this same technique on daytime

vertical wind velocities in the boundary layer. Brandstllter and Swinney

(1987) applied the Grassberger-Procaccia algorithm to experimental data

obtained from the observation of Couette-Taylor flow. Elgar and Mayer-Kress

(1989) applied the correlation integral tetinique to ocean wave data and found

4 Froehling et al. (1981), p605.
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a system with a correlation dimension 5 greater than 9. Osborne et al. (1986)

used the Grassberger-Procaccia algorithm to find a correlation dimension of

1.4 in the motions of buoys in the Pacific ocean. There are many additional

studies in which this technique was used; some are described in later chapters.

1.1 Moiatio

This study proposes to search for a strange attractor associated with the

saturation of middle atmosphere gravity waves in the echo data obtained from

a partial reflection radar located in Saskatoon, Canada. This study rests on the

hypothesis that there is a strange attractor associated with the saturation of

middle atmosphere gravity waves and that it can be detected in middle

atmosphere data.

We chose to use the raw echo data from the partial reflection radar

because it had a high sampling rate; the normal post-processing which

retrieves horizontal winds yields only one data point for approximately two

minutes of echo data and introduces a degree of smoothing to the signal. The

relationship between the echoes and the dynamics and physics of the middle

atmosphere is not completely understood; this drawback will hinder the

interpretation of the physical meaning of any attractor that might be found.

The data set studied here was chosen because of the possibility that it contained

gravity waves and it was given to us (free!).

The laboratory studies described in Chapter 2 suggest that there is a

transitional regime in many fluids between laminar and random behavior.

This transitional regime occurs when some critical stability parameter is

exceeded. Oro:e this critical threshold is passed, the flow is considered chaotic

and is characterized by a low dimension, non-integer attractor. The dimension

of these systems is integer for stability parameter values which are below the

critical level but becomes non-integer once this critical threshold is passed

5 See Chapter III for a discussion of "he different definitions of dimension.
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and increases as the stability of the system decreases. However, these systems

take many different routes from ordered (i.e., periodic) to chaotic behavior;

there does not appear to be a universal route to chaotic behavior. This will be

discussed in detail in Chapter II.

Upward propagating gravity waves are thought to grow until they

become unstable and decay to turbulence, transporting momentum from the

lower atmosphere to the upper atmosphere. Their stability changes

continuously as the gravity waves propagate upward and is a function of the

wave, the atmosphere through which it propagates and the interaction

between the wave (or waves, as is the more likely scenario) and the

atmosphere. If the results from laboratory studies can be extended to gravity

waves in the atmosphere. the saturation of middle atmosphere gravity waves

may also be characterized by a transitional regime and hence a strange

attractor. The dimension of this attractor should be a function of altitude, since

the stability of the gravity wave is a function of atmospheric variables which

vary with height. The dimension of the gravity wave should become non-

integer once it becomes saturated and should increase as the wave propagates

upward past the saturation level.

This study does not depend on the exact mechanism of gravity wave

saturation; there are many different conceptual models of gravity wave

breaking. It assumes only that gravity waves do become saturated in the

middle atmosphere. There are some mechanisms which limit gravity wave

growth (e.g., nonlinear wave-wave interaction) but do not result in wave

breaking. In addition, other types of fluid instabilities occur in the middle

atmosphere besides those associated with gravity waves, e.g., Kelvin-Helmholtz

instability. The Kelvin-Helmholtz instability is supported by observations of

billow clouds near the summer mesopause (Fritts. 1984).

We focus on gravity waves because the vertical profiles generated by

the radar can be used to monitor the changes in the system dimension as the

wave propagates upward and the stability changes. This does not rule out
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detecting strange attractors in the data which are the result of some other type

of wave and instability. If chaotic behavior in the transition from laminar to

turbulent flow is universal then we should find evidence of strange attractors

for fluid instabilities other than gravity waves. Two different models of

gravity wave instability are reviewed in the hope that finding a strange

attractor may offer insight into which model better describes gravity wave

saturation.

The hypothesis that there is a strange attractor associated with the

saturation of middle atmosphere gravity waves which we will be able to detect

rests on many assumptions. The biggest assumption is that the transition to

chaotic behavior observed in experimental studies is applicable to the types of

fluid instabilities that occur in the atmosphere. The second assumption is that

we will be able to detect the presence of a strange attractor in atmospheric

data.

None of the fluid studies that have shown the transition from order to

chaos in the laboratory are a particularly apt analogy for atmospheric gravity

waves. Closed systems (e.g., Rayleigh-Bdnard convection, Couette-Taylor flow)

are very dissimilar to gravity waves. The experimental system closest to

gravity waves in which the transition to chaotic behavior is observed is the

excited jet (Bonetti and Boon, 1989). Chaotic behavior may be specific to these

systems and not indicative of a more universal behavior.

We might not be able to detect a strange attractor in gravity wave

saturation even if it exists. Experimental studies offer the opportunity to make

a long series of observations of a fluid under precisely controlled conditions.

Such controlled conditions do not exist in the atmosphere; the atmosphere

changes continuously. The search for strange attractors in atmospheric data

has been largely unsuccessful despite studies which claim to find them (see

Chapter Ii for a summary of these studies and our critique). Measurements of

the atmosphere are rarely stationary (in the statistical sense) and never
Cc contain as much data as one would like. These two problems create an almost
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insurmountable obstacle to detecting strange attractors in atmospheric data as

will be discussed in later chapters.

The data set may not contain any evidence of gravity wave saturation.

In laboratory studies, measurements can be made at several locations in the

fluid (especially for closed systems) and over a long period of time under

precisely controlled conditions. In the case of the excited jet, measurements

were made at one location as the flow streamed by. We can not measure gravity

waves in a similar manner. Under ideal conditions, gravity waves will

propagate through the volume of the atmosphere that is probed by the radar

and thereby be detected. It may be unlikely that gravity waves will undergo

saturation in the volume of the atmosphere that is directly being measured.

However, the turbulence left behind by gravity wave saturation may be

detected as it is advected over the radar site by the mean wind.

1.2 Organization

This work is divided into six chapters. The first chapter, "Introduction",

is almost complete by this point. The second chapter is titled "Gravity Waves

and Chaos in Fluids" followed by chapter III, "The Methods of Analysis". The

data and its source are reviewed in Chapter IV. "Overview of the Data". The

fifth chapter, "Analysis and Interpretation", contains the analysis of the data

and describes its meaning. The final chapter, "Conclusion and

Recommendations for Future Work", provides a summary of the conclusions

t, and suggestions for further work

Chapter II gives a brief review of some of experimental work done on

different types of fluid flows in which chaotic behavior was observed. It

describes some of the most common routes to chaotic behavior observed in

fluid experiments and how they are interpreted. Chapter II also contains a

brief account of attempts at detecting strange attractrs in atmospheric data

and the different flaws in many of these studies. The chapter concludes with a
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very brief review of gravity wave theory; it focuses on two of the many

possible mechanisms behind gravity wave saturation in the upper

atmosphere.

Chapter III describes the methods used to analyze the data. Because

analyzing meteorological data for chaotic behavior is relatively new, most of

the chapter is devoted to a detailed overview of the Grassberger-Procaccia

correlation integral algorithm. The strengths, weaknesses and limitations of

this algorithm are thoroughly reviewed. The chapter concludes with a brief

overview of the more conventional autocorrelation and power spectrum

analysis that will be used to supplement the analysis of system dimension.

The data used in this analysis is described in Chapter IV. The theory

behind partial reflection radar measurement techniques is briefly reviewed

because it adds some insight into how to interpret the data. The data set

contained a number of deficiencies which limited the scope of the analysis;

these are also described in Chapter IV.

Chapter V covers the implementation of the analysis, the results and

their interpretation. The first section describes the implementation of the

Grassberger-Procaccia algorithm along with the necessary supporting

analysis. A sample of the results of this analysis is given in the following

section. The chapter concludes with the interpretation and discussion of the

results of the analysis of the system dimension.

The conclusions and recommendations for future work are given in

Chapter VI. This thesis leaves many unanswered questions which provide

ample room for further research. While no evidence of chaotic behavior was

found in this data set, there still remains more work to be done on both

refining the analysis technique as applied to atmospheric data and searching

for chaotic behavior in the generation of atmospheric turbulence.

Appendix A contains the complete set of graphs depicting the results of

the correlation integral algorithm analysis. These are included in their

entirety to fully document the negative results of this study. The
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corresponding slopes of the figures shown in Appendix A are included in

Appendix B. The slope of the correlation integral should be equal to the fractal

dimension of the attractor if there are sufficient points to fully saturate the

attractor in phase space.
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CHAPTER II

GRAVITY WAVES AND CHAOS IN FLUIDS

This chapter reviews some of the work on chaotic behavior in different

types of fluid regimes observed in laboratory experiments. It also provides a

brief description of attempts to find evidence of a fractal dimension (and thus

a strange attractor) in atmospheric data. It concludes with a general

description of internal gravity waves in the atmosphere and a discussion of

two possible mechanisms of gravity wave breaking.

2.1 Chaos in Laboratory Experiments

Laboratory experiments which examine chaotic behavior in fluids can

be divided into two categories: those in open systems and those in closed

systems. In closed systems, the fluid is confined between rigid boundaries. In

open systems, the fluid is either not bound by rigid boundaries or the

boundaries are far enough away as to not influence the flow. Couette-Taylor

flow and Rayleigh-Bdnard convection are examples of closed systems. The

excited jet is an open system whose description will follow that of the closed

systems.

2.1.1 Closed Systems

Two of the most frequently examined closed systems are Rayleigh-

B6nard convection and Couette-Taylor flow. Both systems provide well defined

examples of the transition :a chaotic behavior as exemplified by weakly

developed turbulence.
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In the Rayleigh-Bdnard system, the fluid is confined between two

parallel plates which are held at different temperatures, usually by heating

the lower plate. The fluid develops convective cells whose behavior is a

function of the dimensionless Rayleigh number, Rd = (gad 3 /xv)AT, where g is

the acceleration due to gravity, a the thermal expansion coefficient, d the

distance between the two plates, K the thermal diffusivity, v the kinematic

viscosity and AT the temperature boundary conditions on the side walls

(Swinney, 1983).

In the Couette-Taylor system, the fluid is confined between two

concentric cylinders which rotate independently at angular velocity i2i and

DO. Most studies have focused on the case where the rotation rate of the inner

cylinder is zero. The behavior of Couette-Taylor flow is governed by the

dimensionless Reynold's number, R=((b - a)bf2o/v), where a and b are the

radii of the inner and outer cylinders respectively, t0 is the angular velocity

of the outer cylinder, and v is the kinematic viscosity (Swinney, 1983).

f 2.1.1.1 Rayleigh-Bnard Convection

Bonetti and Boon (1989) note that the low dimension chaotic attractor in

Rayleigh-Bdnard convection is "a consequence of the high confinement

imposed by the boundaries an the internal flow which results in strong

coupling between modes" 1 . The end result is spatially coherent "frozen" flow

which is described by a single, low dimension, chaotic attractor. In =11

aspect ratio 2 Rayleigh-Bnard systems, the primary routes to chaos are period

a doubling and intermittency (Behringer, 1985); see the following section for

definitions of the different routes to chaos.

In large aspect ratio Rayleigh-B6nard systems, chaos is generated by

competition between different unstable modes, each of which can be described

1 Bonetti and Boon (1989), p3 322 .
2 The aspect ratio is defined as the ratio of the horizontal dimension to the

depth.
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by a localized chaotic attractor (Walden et al., 1985). The turbulence in these

systems is "spatio-temporal" which results in a loss of spatial coherence in the

flow. Behringer (1985) feels the precise route to chaos is still unclear.

Libchaber et al. (1983) studied the route to chaos for Rayleigh-Bnard

convection in the presence of a magnetic field as a function of two control

parameters, the Rayleigh number Rd and the Chandrasekhar number Q; Q is

defined as

yB 2 d 2
Q - 0

pv
(2.1)

where a is the electrical conductivity, B0 is the magnitude of the horizontal

magnetic field, d is the depth of the fluid, p is the fluid density and v is the

kinematic viscosity. The magnetic field tends to "stiffen" the fluid allowing

Rayleigh numbers higher than the normal critical values to be investigated;

thus, larger nonlinearities in the convection can be examined. Libchaber et

al. (1983) found period doubling and frequency locking to be the routes to

chaotic behavior for low Rayleigh numbers and low magnetic fields.

Libchaber ct al. (1983) found quasi-periodicity and soft mode instability (i.e.,

the interaction between oscillatory instability and stationary instability) as

the routes to chaos for high Rayleigh numbers.

2.1.1.2 Couette-Taylor Flow

Brandstater and Swinney (1987) examined chaotic behavior in Couette-

Taylor flow. For values of R/Rc < 11.7, where R and Rc are the Reynolds and

critical Reynolds number for the system, the dimension of the system is 2 for

modulated, wavy vortex flow. When the ratio of Reynolds numbers exceeds that

threshold, the dimension of the system becomes non-integer and slightly

greater than 2. This threshold also marks the first appearance of broadband
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noise in the power spectrum. Brandstlter and Swinney (1987) note that the

exponential decay in the rower spectrum provided further evidence of non-

periodic behavior corresponding to a low dimension chaotic attractor rather

than stochastic processes. The dimension of the system increased as the ratio

of Reynolds numbers (R/Rc) increased above the critical threshold

(Brandstater et al., 1983; Brandstater and Swinney, 1987).

Brandstiter and Swinney (1987) found that the attractor dimension

characterized flow over the entire annulus. The dimension was the same

(within the error limits of the calculation) for measurements made at a

number of different locations in the flow. Thus, the attractor characterized the

entire flow in the annulus rather a specific location in 'he fluid. This result

will not be true of open systems.

BrandstAter and Swinney (1987) found that none of the well established

routes to chaos, e.g., period doubling, intermittency, described the transition to

chaos in this system for the conditions they investigated. They speculate that

their experiment revealed another route to chaos which requires further

study.

2.1.2 Open Systems

The transition to fully developed turbulence is generally investigated in

open systems whereas the transition to weakly developed turbulence is studied

in closed systems. The excited jet provides an example of chaotic behavior in

an open system (Bonetti and Boon, 1989). The excited jet is of interest to us

because of similarities to shear flows in the atmosphere.

Bonetti and Boon (1989) observe that the region of growth of the most

unstable mode in open systems is followed by nonlinear saturation of those

modes which generate advected coherent structures. This process leads to

three dimensional destabilization and breakdown of these coherent structures.

Bonetti and Boon (1989) investigated this highly transitional region in open
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flow as exemplified by the excited jet in an effort to examine the spatial

destabilization of "coherent structures" in the flow.

The excited jet is a stream of air that is emitted under pressure from a

pipe. The flow is axially symmetric and has a Poiseuille velocity profile as a

function of radial distance from the center of the flow. The jet is excited by

applying a perturbation to the flow (i.e., by vibrating the end of the pipe from

which the flow emerges).

The excited jet has three distinct regions downstream: the laminar

region, the weakly turbulent zone and the turbulent zone. (Bonetti and Boon,

1989). The laminar region, nearest the source of the flow, is characterized by

stationary macroscopic structures. This region is followed by a weakly

turbulent zone where the macroscopic structures are no longer steady in time.

Farther downstream is the turbulent zone where the macroscopic structures

have disappeared and flow is essentially random; mixing occurs in this zone.

Bonetti and Boon (1989) note that the appearance of these regions was

independent of the excitation frequency, although varying the frequency did

alter their length. They sampled over 8000 periods of the attractor making

between 10 and 30 measurements per period.

Although they could not accurately determine the Kolmogorov entropy,

Bonetti and Boon (1989) did determine that it had a finite non-zero value which

is indicative of chaotic behavior (Grassberger and Procaccia, 1983). Bonetti

and Boon (1989) found that the flow was characterized by a non-integer

dimension which had an initial value *of less than 3 but increased farther

downstream to between 3 and 4. The increase in attractor dimension

downstream was associated with a corresponding growth in broadband noise

in the power spectrum. The turbulent region was characterized by a

continuous growth in the correlation dimension downstream; the attractor in

this region was not saturated due to an inadequate number of points. This was

most likely because the flow became essentially random although the limited J

number of points in the data set makes this conclusion tenuous.
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Unlike closed systems where the attractor characterized the flow in the

entire system, the attractor dimension in open systems only characterized the

flow over a local length scale (Bonetti and Boon, 1989). The local length scale is

defined as the distance to the first zero in the spatial autocorrelation or the

distance to the first local minimum in the spatial mutual information.

Intuitively, this makes sense. The attractor dimension in closed systems

increases as an external stability criteria decreases; the change in stability

haracterizes the entire system. The instability in the open jet amplifies

downstream corresponding to a continuum of stability changes in the

downstream direction. Consequently, the attractor dimension grows

downstream as the instability amplifies. Each downstream location in open

flow is analogous to a different external stability criterion in closed flow.

Since each stability criterion in closed flow had a characteristic attractor

dimension, so will each downstream location in open flow (to within the local

length scale) have its characteristic dimension.

2.1.3 Routes to Chaos

There are several well established routes to chaotic behavior:

intermittency, frequency locking, period doubling and the periodic-quasi-

periodic-chaotic sequence. Each has been observed in experiments conducted

on different types of fluid flows. Behringer (1985) notes that the origins of

turbulence in convecting layers are usually due to the nonlinear interaction

of macroscopic modes rather than microscopic fluctuations. He goes on to

observe that "a strange attractor is a very complex region of phase space, now

commonly associated with the onset of turbulence". 3

(

3 Behringer (1985) p6 7 2 .
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2.1.3.1 lntermittenay

4t Some systems exhibit a transition from periodic behavior (R < RT, where4
R is some transition parameter and RT is some critical value) to chaotic

behavior (R > RT) which is characterized by occasional bursts of noi, e. For R

only sightly greater than RT, there are long intervals of periodic behavior

interrupted by short bursts of noise. With increasing values of R, the interval

between bursts of noise decreases until it eventually becomes impossible to

distinguish the original underlying periodic state. Behringer (1985) notes that

intermittency occurs when a stable and unstable attractor merge.

Intermittency as a route to chaotic behavior has been observed in

convection experiments (Swinney, 1983) and Rayleigh-Bdnard convection

(Behringer, 1985).

2.1.3.2 FreQuency Locking

Frequency locking is defined as the transition from a quasi-periodic

state to a frequency locked (periodic) state for some increasing value of a

control parameter. The quasi-periodic state persists over a wide range of the

control parameter, followed by a well defined transition to a chaotic state.

Frequency locking has been observed as a route to chaos in Rayleigh-

Bdnard convection (Swinney, 1983).

2.1.3.3 e..riod Doubljng

Period doubling occurs when a single stable solution bifurcates into

alternating between two stable solutions once a critical threshold is reached.

The solutions bifurcate again as the critical parameter further increases. The

ratio between successive bifurcations is given by Feigenbaum's number.

Period doubling has been observed as a route chaotic to behavior in

Rayleigh-Bdnard convection (Swinney, 1983; Behringer, 1985; Libchaber et al.,

1983) and shallow water waves (Swinney, 1983).
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2.1.3.4 Periodic-Ouasi-Periodic-Chaotic Sequence

The periodic-quasi-periodic-chaotic sequence is defined as the

transition of a system which is periodic (i.e., characterized by only one

frequency) to quasi-periodic (i.e., a system characterized by two

incommensurate frequencies) to one which is chaotic (i.e., a system

characterized by three or more incommensurate frequencies).

This route to chaotic behavior has been observed in Couette-Taylor flow

(Swinney, 1983).

2.2 Chaos in the Atmosphere

There have been a number of studies of strange attractors in

meteorological data. Most of these have focused on the longer time scales of the

synoptic and climactic range. Much of the work on the longer time scales has

been prompted by Lorenz's pioncering identification of a strange attractor in

a model of the general circulation (Lorenz, 1963). Very little work has been

done on the time scales over which waves decay to turbulence.

2.2.1 Short Time Scales

Tsonis and Elsner (1988) searched for an attractor over very short time

scales in vertical velocity data from the boundary layer. They estimated a

dimension of - 7.3 for vertical winds measured at 10 m height during the day
£

in Boulder, Colorado. The data consisted of 10 second averages of 10 m vertical

winds measured over an 11 hour period from 1330 - 0030 GMT, totalling 3960

points,

The estimate of the system dimension by Tsonis and Eisner (1988) is

flawed for several different reasons. Smith (1989) showed that over 2.3x101 1
r

points would be required to accurately obtain a dimension of 7.3, while earlier
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estimates of the number of points required to obtain the attractor dimension

(i.e., I0d2 100d2 ) suggest that over 107 points would be needed to accurately

obtain an attractor dimension of 7.3! It is unlikely that one could specify the

dimension of a system with eight degrees of freedom from an analysis of only

3960 data points.

Tsonis and Eisner (1988) had no initial hypothesis as to why there would

be an attractor in the data set. They speculated that the attractor was connected

with a convective system described by at least eight differential equations and

might be related to the Lorenz system. In addition, this data set was certainly

non-stationary, a fact not considered by Tsonis and Eisner (1988). Any estimate

of an attractor dimension must consider stationarity, else the data suggest the

presence of a finite dimension strange attractor where there is none (see

Chapter III for a more thorough discussion).

Henderson and Wells (1988) also used vertical velocity data from the

boundary layer to estimate the dimension of an attractor. Their data consisted

of the vertical velocities at 10 m above the ground measured by a sonic

fanemometer during the passage ot' a thunderstorm gust front over an - 10

minute period. Henderson and Wells (1988) found evidence of an attractor with

dimensions between 4.0 and 5.5. To accurately obtain a dimension of 4 or

greater would have required more than 3x10 6 points! While Henderson and

Wells (1988) did not specify the number of points they used in their analysis,

the number of points required for an accurate dimension estimate implies a

minimum sampling rate of 5000 Hz. It is unlikely that there were a sufficient

number of points to determine the attractor dimension.

, 1 2.2.2 Long Time Scales

Most studies looking for attractors in atmospheric data consider longer

time scales. Fraedrich (1986) used the Grassberger-Procaccia algorithm to

determine the dimension of an attractor in surface pressure data, sunshine

*duration data and 500 mb zonal wave amplitude data. In a later study

17



(Fraedrich, 1987), he examined similar data to determine the dimension of the

systems under consideration and also investigated the predictability.

The surface pressure data consisted of 15 years (5475 points) of surface

( pressure measurements made at 0600 GMT in Berlin, West Germany. Fraedrich

considered two cases: 15 years of the annual cycle, and seasonal data sets made

over 14 winter and 15 summer seasons. Fraedrich (1986) found no evidence of

an attractor with a finite dimension for the continuous data set. In contrast,

Fraedrich (1986) calculated dimensions of 3.2 and 3.9 for the winter and

summer seasons, respectively. However, in another study of the same data set

published a year later, Fraedrich (1987) found a dimension of > 6.8-7.1. He gave

no reason for the difference in the latter finding.

Fraedrich (1986) repeated these calculations for a 30 year record of the

number of daily sunshine hours. Again, the data set was considered as two

separate cases: a 30 year continuous record and separate winter (29) and

summer seasons (30). As for the surface pressure data, Fraedrich (1986) foundfno evidence for an attractor with a finite dimension in the continuous record,

but estimated dimensions of 3.1 and 4.3 for the winter and summer seasons,

respectively.

Fraedrich (1986) repeated the analysis for 10 years of 500 mb zonal wind

data at 50 0N. The continuous record did not support evidence of a finite

dimension attractor. Fraedrich (1986) calculated dimensions of 3 and 3.6 for

the winter and summer cases, respectively.

On the climactic scale, Fraedrich (1987) used an oxygen isotope record

from deep sea core analysis to obtain a dimension of 4.4-4.8 for an attractor.

The predictability of this attractor was between 10000-15000 years.

Grassberger (1986) also searched for evidence of a climactic attractor in

oxygen isotope ratios from deep sea cores. He found no evidence of a finite

dimensional attractor in the data set. The small number of data points used in

the study prevented attributing a dimension less than 10 to the system.
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Keppenne and Nicolis (1989) applied the Grassberger-Procaccia

algorithm to 9000 days of 500 mb geopotential height records from 5 stations

over western Europe. They calculated a dimension of 7.5 with a dispersion of

10% for the attractor in this data. They discovered fractal dimensions in the

data from each station as well as the average of the five stations. Keppenne

and Nicolis (1989) used empirical orthogonal functions to support their

findings.

These studies suffered from the same shortcomings that plagued the

shorter time scale investigations. In all cases, it is difficult to support evidence

of an attractor given a limited number of points in the calculation of the

dimension. In a later section we will describe the number of points necessary

to accurately estimate the dimension of an attractor.

Fraedrich's studies (Fraedrich, 1986) of the different synoptic scale data

would have required at least 74,088 points, a number far greater than the 7300

actually used. The revised dimension for the surface pressure attractor, d -> 6.8

- 7.1 (Fraedrich, 1987), would have required 5,489,031,744 points, an even

larger figure! The dimension estimate for the climactic scale attractor obtained

from the oxygen isotope data is similarly flawed. To support evidence of a

dimension of 7.5, Keppenne and Nicolis (1989) would have needed more than

2.3x1011 points instead of the 18,000 they used. However, their dimension

estimate was supported by a similar finding using a completely independent

technique and thus can be given more credence.

Unlike those for short time scales, large scale studies have a stronger

theoretical basis; the work of Lorenz (1963) shows the presence of a strange

attractor for the synoptic or climactic time scales. The shorter time scales lack

this theoretical underpinning.
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2.3 Gravity Waves and Gravity Wave Breaking

Internal atmospheric gravity waves (sometimes referred to as buoyancy

waves) were first proposed by Hines (1960) as a mechanism for describing

observations of travelling ionospheric disturbances (TID's). The gravity wave

mechanism satisfied some important characteristics of the observations:

upward propagation of the wave and the increase of the wave amplitude with

height 4 .

Gravity waves have frequencies in the range: f << co << N, where f is the

Coriolis parameter, f = 2f0sinq = 1.1 x 10- 4 s- 1 for the latitude of the data (570 N)

to be used in this study, and N is the Brunt-Vaisalli frequency, defined as

(2.2)

(where g is the acceleration due to gravity and 0 is the mean potential

temperature. This frequency is equivalent to a period of - 5 minutes in the

mesosphere (Andrews et al., 1987).

There are many mechanisms which lead to the saturation and

dissipation of atmospheric gravity waves. The primary mechanisms are

thought to be dynamic and convective instabilities although there are

competing mechanisms. Other mechanisms which limit wave growth are wave

dissipation by turbulence, molecular diffusion, radiative damping, inertial

instability, wave transience and the cascade of wave energy to small scales via

nonlinear wave-wave interaction (Fritts and Rastogi, 1985). Fritts and Rastogi

4 Conservation of energy requires the amplitude of upward propagating waves
to grow at a rate proportional to [ p(z)] - 1/ 2 . In the atmosphere, density
decreases approximately exponentially with height, i.e. at a rate proportional
to e-z/H, where H is the atmospheric scale height. Thus, upward propagating
waves grow at a rate of approximately ez / 2H.
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(1985) note that wave-wave interaction is the most efficient of these

mechanisms.

In the turbulence theory of gravity wave saturation, the wave

amplitude is limited by the turbulent eddy diffusivity which originates from

the convective instability of the wave itself, with convective overturning

hypothesized not to occur. Walterscheid and Schubert (1990) object to this

theory of gravity wave saturation on two points. First, their model, which

contains no assumptions about the eddy diffusivity, shows that overturning

does indeed occur. The upward propagating wave is not limited to neutral

stability, but instead develops highly unstable regions over certain phases of

the wave. The overturning causes localized convection which restores neutral

stability. Second, the turbulence generated by the breakdown of the wave does

not act to limit growth of the wave, but is a consequence of the nonlinear

overturning. As Walterscheid and Schubert (1990) point out, overturning and

wave saturation can occur even in the absence of turbulence. Upward

propagating waves overturn when the lapse rate of the mean potential

temperature plus wave potential temperature becomes unstable, i.e.,

(O+ 0') <0
az

(2.3)

The unstable lapse rate is equivalent to the condition where the wave plus the

mean horizontal velocity exceeds the phase speed of the wave, i. e.,

u'+U >C.
(2.4)

Rearranging this expression yields a measure of the degree of nonlinearity of

the wave, i.e.,
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(2.5)

when overturning occurs. Thus, gravity waves are highly nonlinear when

saturation takes place.

Dynamical or shear instability occurs when the wave amplitude

becomes large enough that the wave plus the mean velocity has a Richardson 5

(Ri) number less than 1/4. Fritts (1982) showed that regions of dynamic and

convective instability are essentially the same, but that convective instability

should occur first and preempt shear instability. Walterscheid and Schubert

(1990) show that convective instability does occur first and preempts shear

instability by limiting the growth of the wave amplitude with height.

However, Chimonas (1986) showed that waves can by dynamically unstable for

any Richardson number if the flow is tilted. The previous studies have all

assumed that the flow is horizontally stratified.

fTransient effects occur when wave breakdown modifies the mean flow

and can cause self acceleration of the wave. This can then lower the height at

which the wave breaks. Walterscheid and Schubert (1990) believe wave

transience introduces important considerations in the wave breaking process

but that it is not the principle mechanism behind gravity wave saturation.

5 The Richardson number is defined as:

g a

Ri -
N2

where V is the velocity and the other variables retain their previous
definitions.
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2.3.1 Conventional Saturation Theory

The term gravity wave saturation refers to any process that acts to limit

or maintain constant wave amplitudes with altitude. The process occurs via

instab,*lities or interactions arising from large amplitude wave motions.

Gravity wave saturation plays an important role in maintaining the

mesospheric circulation and temperature graditnt; gravity wave saturation

provides the drag necessary to explain the mean zonal wind reversals

observed in the upper mesosphere and !ower thermosphere (see for example,

Fritts, 1984; Holton, 1982, 1983; Dunlzrton 1982; Lindzen, 1981).

Here, we provide a brief review of linear saturation theory as proposed

by Lindzen (1981). Linear satu'ation theory assumes that the growth of the

amplitude of monochromatic gravity waves in a horizontally stratified flow

would be limited by the appearance of convective instability. This would result

in the production of turbulence and a level of eddy diffusion that is just

sufficient to restrain vave amplitudes to the unsaturated limit. This theory

assumes that the gravity wave saturation does not affect wave propagation or

the wave characteristics.

The basic equations in Cartesian coordinates for an inviscid atmosphere

are:

P - +Vp- P =O

dt
dp poN2  =
dt 9 0

(2.6)

where p is the atmospheric density, v is the vector velocity, w the vertical

component of the velocity, g the acceleration due to gravity, p is the pressure

and N2 is the Brunt-Va1isall frequency. The equations in 2.6 are Euler's

equation, a modified form of the thermodynamic equation and the continuity
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equation, respectively. The Boussinesq approximation is implicit in this set of

equations, i.e., the atmosphere will be considered as an incompressible fluid

except in the buoyancy term. This approximation is not especially valid for the

atmosphere as a whole, but may be valid for the region near the level of

gravity wave saturation.

Let us apply the following perturbations to an incompressible, inviscid

and adiabatic atmosphere. The background is assumed to be hydrostatic with a

zonal wind that varies with height, i.e.,

u = uo(Z) + u'(x,z,)
w = w'(x,z,t)

p = pO(z) + p'(x,z,t)
p = pO(z) + p'(x,z,t),

(2.7)

where the primes indicate the perturbation quantities, uO is the basic state

zonal wind, and P0, P0 are the basic state density and pressure. The basic state

pressure and density vary with height as

po(z) = po(O) e'zH

po(z) = po(O)e'Z/ H

(2.8)

where pO(O) and p0(0) are the pressure and density at the surface and H is the

scale height of the atmosphere.

Applying the perturbations (2.7) to the set of equations in (2.6) and

neglecting second and higher order terms yields the set of perturbation

equations
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au' u PO'aM =-zo

at TOU~X az ax

atv az'
po - - + 0 Dp_ poN 2W' 0

at ax o

au, aw+ 0

(2.9)

We can solve for w' first by assuming solutions of the form

u'= i(z) ei(Ot - kx)

w= O(Z)el(w t-kx)

p= ?(Z) ei(o t - kx)

p= p(z) ei(Wt - kx)

(2.10)

and by substituting these into the perturbation equations (2.9), Cancelling out

the exponential terms yields the set of perturbation equations:

ipoco - kuo] + poL- w = ik

ipo[c - kuo]' = - P-azw "P9

ikf+-- =0az
i[co - kuol-p -p °N 2 w- = 0

(2.11)

Solving this for w yields the Taylor-Goldstein equation (Fritts, 1984):

w [ N2  I a2u k2  1uo 0

( az2 (w0kuO) 2 (co-kuo) az2 H(w -kuo) Dz 4H2

(2.12)
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Lindzen (1981) notes that for cases of gravity wave saturation, we can assume

that

_I_<< N2

4H2 (0)-kUO) 2

(2.13)

which allows us to drop the last term on the left hand side of equation 2.12. The
a 2 uo/az2 and Duo/Dzterms can also be dropped because the basic state zonal

wind is assumed to be a slowly varying function of height. Scaling arguments

also allow us to neglect the k2 term. This reduces equation 2.10 to

2~k_2 + Nk20

Z2  ( -kuo) 2 j

(2.14)

Near the critical level, the denominator, (o - kuo), goes to zero because the

absolute value of the horizontal component of the phase speed (O)/k)

approaches the background zonal wind speed. This zero creates a singularity at

the critical level, making solution of equation 2.14 difficult.

The WKBJ approximation is used to solve an equation of the form of 2.14.

The WKBJ method is described as follows (Mathews and Walker, 1970). Given an

equation of the form

+f(x)y=0
ax2

(2.15)

where f(x) is a slowly varying function of x and does not pass through a zero

or other singularity, then solutions to equation 2.15 are of the form
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y(x) [c+e if f(x) dx + 'f(x) dx]

[f(x)]'/4 
(2.16)

If we define the following quantity,

x 2  N 2

(co - kU0) 2 ,

(2.17)

then the solution to equation 2.15 becomes

W' = A x 1/2 ef Xd7"

(2.18)

and is depicted in Figure 2.1.

Lindzen (1981) uses this result to show that the condition for the

convective saturation of gravity waves is

dz
(2.19)

where T' is the perturbation temperature and r is the dry adiabatic lapse rate.

Other commonly used conditions for convective gravity wave saturation are:

I P + P'l=0.
(2.20)

I Po+ P1=o
(2.21)
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dz 1=
(2.22)

and I uo+-u=0.
(2.23)

Saturation conditions in 2.20 and 2.21 occur because you can not have negative

pressures or densities. Condition 2.22 is the same as 2.19; it is the condition for

ordinary convective instability. The last condition, 2.23, relates to the phase

speed of the wave "catching" up to the basic state wind speed.

The gravity wave saturation model of W Iterscheid and Schubert (1990)

provides some interesting insights into the mechanism behind gravity wave

saturation. Two dimensional and fully nonlinear, the model makes no

significant assumptions about the gravity wave saturation mechanism; the

atmosphere in the model is compressible and non-hydrostatic. Most

importantly, the model indicates that nonlinear growth of the gravity wave

creates regions of overturning prior to saturation. The large unstable

potential temperature gradients allow the development of small scale cellular

convection which causes the breakdown of the gravity wave. Turbulence is an

end product of the wave breakdown via the decay of the cellular convection

rather than the cause of the wave breakdown. Walterscheid and Schubert

(1990) cite the laboratory work of Delisi and Corcos (1973) as support for this

conclusion from their model.

2.3.2 Slantwise Static Instability Theory

Hines (1988) objects to the linear saturation mechanism proposed by

Lindzen (1981) on two points: the spectrum of waves and the vertical

gradients. In raising these objections, Hines suggests that slantwise static

instability is a less demanding mechanism for gravity wave breaking.

Waves in the middle atmosphere are not represented by a single

dominant wave number but instead by a spectrum of wave numbers. Hines
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(1988) notes that this does not affect the linear saturation theory of wave

breaking per se, but it "does open the way to patchiness rather than a laminar

deposition of turbulence&'6 . The instability criterion for a single wave mode,

i.e., where the phase speed of the perturbation equals that of the background

flow, does not impose nonlinearity on the system. It would impose large

nonlinearities when two waves have similar amplitudes but different wave

vectors. Hines (1988) states that the nonlinear interaction may leach away

wave energy before the wave becomes unstable.

Hines (1988) also objects to the conventional saturation theory because

it assumes the background flow is strictly horizontally stratified and only

considers vertical gradients in the evaluation of the stability. Hines notes that

this restriction is more mathematical in nature but is not justified physically.

Hines (1988) examines the stability criteria for gradients which are no longer

strictly vertical.

Hines (1988) notes that the criterion for the onset of instability in a

horizontally stratified atmosphere is given by

0z > 0

(2.24)

where g is the acceleration due to gravity, 0 is the mean potential temperature.

This is the negative of the Brunt-ViisallN frequency Wb2 (defined as N2 in the

previous section) and as such would appear in the form

ei bt

(2.25)

6 Hines (1988), p12 69.

29



5

in the solution of the relevant linearized equations. If equation 2.25 were

negative, i.e., unstable Conditions, then the solutions would take the form

et/t
(2.26)

where rz is the e-folding time for the growth of any instabilities. This

mechanism will be referred to hereafter as vertical static instability. If the

atmosphere is not horizontally stratified, i.c., the gradient of the potential

temperature is no longer constrained to the vertical, the new criterion for

instability is given by

O 0

(2.27)

where is the angle off the vertical for any parcel motion oriented along the s

axis as shown in Figure 2.2. Any parcel motion confined to the shaded region

in the figure would be unstabie. By analogy, the c-folding time for growth of

an instability for this type of stratified atmosphere would be given by

t/
C

(2.28)

The e-folding time for growth of the instability may be long for certain values

of .

Hines (1988) concludes that turbulence is far more likely to develop

from slantwise static instability than for vertical static instability, even

( though it may be a slower mechanism. Since gravity waves produce potential

temperature gradients that are not necessarily constrained to the vertical
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plane, this mode of instability is the more likely to generate turbulence. Under

most conditions, the normalized wave amplitude necessary for the
I
4 development of turbulence from slantwise static instability is <<1; the

normalized wave amplitude necessary for the development of turbulence for

vertical static instability is defined as 1.

Hines also concludes that the turbulence spectrum from slantwise static

instability would be highly anisotropic, with much stronger horizontal

motions than vertical motions. This might approach two dimensional

turbulence in the limit. The production of turbulence from slantwise static

instability is more likely for "short" vertical wavelengths than from vertical

static instability. Hines (1988) notes that for vertical wavelengths of 6 km and

a buoyancy period of 5 minutes, vertical static instability requires vertical

velocities of 20 m s- 1 for saturation to occur., This is not consistent with

observations. However, because slantwise static instability requires much

smaller wave amplitudes for saturation, this mechanism can produce

saturation consistent with observations of vertical wind velocities in the

mesosphere.

The one difficulty with finding a strange attractor associated with the

slantwise static instability mechanism is that the smaller wave amplitudes

which produce saturation and turbulence may allow the gravity wave to

remain fairly linear. The analysis by Hines (1988) was done for a

monochromatic wave to simplify the mathematics and is limited by this

assumption. Nonlinear wave-wave interaction will affect both saturation

mechanisms equally. Without nonlinear wave-wave interaction, the slantwise

* static instability mechanism reduces the probability of finding an attractor in

( the saturation of gravity waves. However, the "patchiness" of the turbulence

created by saturation of gravity waves with a spectrum of wave numbers

opens the way for the investigation of the fractal structure of turbulence.
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2.3.3 Nonlinear. Mechanisms

There are three "resonant triad" interactions which act on gravity

waves: elastic scattering, induced diffusion and parametric subharmonic

(. instability (Fritts and Rastogi, 1985). Of these mechanisms, Fritts and Rastogi

feel parametric subharmonic instability acts most efficiently in transferring

wave energy between waves of very different scales. Parametric subharmonic

instability transfers energy from large scale waves to two small scale waves at

half the frequency of the larger wave. Elastic scattering converts the incident

wave into a reflected wave by scattering off a vertical shear in the wind and

tends to make the vertical wave spectrum symmetric. Elastic scattering can be

rapid, depending on the vertical wave number (Yeh and Liu, 19,85). In induced

diffusion, the wave action density diffuses in wave space if two waves with

nearly identical wave vectors interact with the vertical shear of a smaller

wave. Ibrahim (1987) suggests that induced diffusion can be sufficient for

gravity wave saturation.

Fritts and Rastogi (1985) note that parametric subharmonic instability

acts on waves of all amplitudes and may exchange energy among waves at

amplitudes less than that required for convective or dynamic instability.

However, it works best at high vertical wave numbers and small intrinsic

frequencies. Fritts and Rastogi do not believe that parametric subharmonic

instability competes effectively with convective or dynamic instability among

higher frequency, larger scale gravity wave motions as a mechanism

, explaining gravity wave saturation.

Parametric subharmonic instability transfers the energy in moderate-

to-large scale waves to small scale waves at one half the frequency. Yeh and

* Liu (1985) note that conservation of wave number and conservation of

frequency rcstrict this mechanismi to those waves with an elevation angle of

600 or greater. The time scale for parametric subharmonic instability varies

with the inverse square of the vertical wavenumber.
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Yeh and Liu (1985) state that if wave growth occurs over an amount of

time equal to a few periods or less, the nonlinear interactions are no longer

considered "weak" and other processes, such as convective or dynamic

instability, may become important. Furthermore, the interactions in their

study only considered the energy transferred in the vertical plane and

neglected energy transferred in the horizontal plane.

Nonlinear wave-wave interaction can act to limit the growth of gravity

waves by transfering energy from larger amplitude waves to smaller waves.

This mechanism will not necessarily lead to gravity wave breaking. There may

be no transition from a laminar state to a turbulent one and therefore no

potential strange attractor in the flow. There may be a strange attractor

associated with nonlinear wave-wave interaction, but it may be a function of

the underlying spectrum of waves instead of a function of the transition from

laminar to turbulent flow. The latter is more likely to be a universal and

repeatable behavior, whereas the former will only describe a particular

packet of gravity waves and may not be found again.
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Figure 2.1 Nonvertical orientation for the potential tempeiaturc gradient.

Interchanges of air parcels along axes within the shaded regions

such as the s axis are unstable (adapted from Hines, 1988).
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CHAPTER III

THE METHODS OF ANALYSIS

This chapter describes the methods that will be used to analyze the data.

The bulk of the chapter is devoted to a description and derivation of the

Grassberger-Procaccia correlation integral algorithm, since this technique is

not commonly used on meteorological data. A discussion of the strengths,

weaknesses and difficulties that arise in employing this algorithm follows the

derivation. The remainder of the chapter provides a brief overview of the

more conventional analysis tools (autocorrelation and power spectrum) that

will be used to support the analysis of the system dimension.,

3.1 The Gr~ssberger-Procaccia Correlation Integral Algorithm

There are a number of techniques described in the literature for

estimating the dimension of a strange attractor. Box counting algorithms yield

an estimate of the capacity dimension, commonly referred to as the fractal

dimension (see, for example, Liebovitch and Tibor, 1989). The nearest

neighbor method developed by Badii and Politi (1987) is another approach to

estimating the dimension of a system. Yet another dimension estimate can be

obtained from singular systems analysis (see Broomhead and King, 1986;

Albano et al., 1988; Vautard and Ghil, 1989). The spectrum of Lyapunov (or

characteristic) exponents for an attractor can be calculated and related to the

dimension of the system (see Packard et al., 1980; Froehling et al., 1981; Roux et

al., 1983; Wolf et al., 1985). However, the most frequently used method to
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calculate the dimension of a system is the correlation integral algorithm

(Grassberger and Procaccia, 1983; Grassberger and Procaccia, 1984).

Each technique has its strengths and weaknesses. The box counting

technique is computationally intensive although Liebovitch and Tibor (1989)

developed a faster and more efficient algorithm. The singular systems

approach is difficult to implement although it is often used as a check on the

other methods (Broomhead and King, 1986; Albano et al., 1988; Vautard and

Ghil, 1989). The nearest neighbor approach is relatively new and has not been

widely used; its strengths and weaknesses have yet to be thoroughly examined

in the literature. Calculating the spectrum of Lyapunov exponents often

presup',oses some knowledge of the attractor. The Grassberger-Procaccia

algorithm has the advantage of being easily implemented and calculated.

Because of its frequent use, the limitations of the Grassberger-Procaccia

algorithm have been widely investigated and described in the literature.

The Grassberger-Procaccia algorithm (along with subsequently

developed variations) will be used in this study. It is easy to understand and

program. It makes no assumptions about the presence of a strange attractor in

the signal and requires no a priori knowledge of its nature or structure.

Somewhat computationally intensive (the computer time increases as the

square of the number of points in the data set), the Grassberger-Procaccia

algorithm is less demanding than the box counting algorithm. Despite these

advantages, this algorithm has several drawbacks which will be discussed in

detail later in the chapter.

Before deriving the Grassberger-Procaccia algorithm and discussing

- some of its advantages and disadvantages, let us define the different concepts

of dimension and the method for building a phase space portrait from a single

data set.
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3.1.1 Concepts of Dimension

Three different dimensions are often used to describe a setl: the

capacity dimension, the Hausdorff dimension and the information dimension.

These are summarized in Table 3.1 (adapted from Farmer et al., 1983). The

Hausdorff and capacity dimension are metric dimensions, a concept of

dimension on which a sense of distance is defined. The information dimension

is a probabilistic dimension based on the natural measure - the relative

probability of different regions of the attractor as obtained from time

averages (Farmer et al., 1983).

Table 3.1 Dimension definitions.

Name Symbol Generic name

Capacity dimension dc fractal

Hausdorff dimension dh ....

Information dimension dl

The capacity dimension is defined as

d, =_ira log N(e)
E 40 log( 1/i)

(3.1)

where N(e) is the number of cubes with sides of length e needed to cover the

set of points (Barnsley, 1988). This definition of dimension is the basis of the

box counting algorithm.

The Hausdorff dimension is more complicated than the capacity

dimension. Its definition is similar to that of the capacity dimension but the

cubes used to cover the set can be of variable length. We will not give a more

1 A set can be a collection of points, a aeometric object or a time series of data.
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precise definition but note instead that for most attractors the Hausdorff

dimension is equal to the capacity dimension (Farmer et al., 1983).

The information dimension is a generalization of the capacity

dimension; it takes into account the relative probability of the cubes used to

cover the set. It is defined as

dI- Hia I(M
d U0nog( (E

(3.2)

where 1(e) is the information for length scale e defined as

N(e)

I(e)=-X pilogpi
i= I

(3.3)

and Pi is the probability that the attractor trajectory visits the ith ckbe. If all

the cubes are visited with equal frequency then the probability that the ith

cube is visited is given by

__1__
Pi= N(e)

(3.4)

and therefore the information can be written as

I(E) = log N(e).
~(3.5)

Thus, the capacity dimension is equal to the information dimension for a

completely homogeneous attractor. In general, attractors are not

homogeneous and the cubes are not visited with equal frequency. Thus, for an

inhomogeneous attractor,
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I(e) < log N(e)
(3.6)

and consequently the capacity dimension is always greater or equal to the

information dimension, i.e.,

dc -> di

(3.7)

Information theory gives a very specific meaning to l(E). It is the

amount of information necessary to specify a system to within accuracy E (E >

0). Alternately, it can be thought of as the amount of information obtained by

making a new measurement with an uncertainty e.

.1.2 Building Phase Space Vectors

Originally, there was no universally accepted method for constructing

phase space vectors from a time series. Packard et al., (1980) pointed out,

"...there is no universally applicable method of phase space construction,

though the natue of the phenomenon might suggest possible alternatives." 2

However, Brandstater et al., (1983) suggested that phase space portraits can be

constructed by lagging the original time series by an arbitrary amount to

obtain the second phase space dimension. This technique of constructing a

phase space representation of the data is often referred to as Taken's method of

delays and is now almost universally used.

Fraser and Swinney (1986) provide a clear explanation of building a

multi-dimensional phas, portrait from a single time series. A scalar time series

s(t) can be expanded into a m dimensional phase space vector x(t) by using

time delays t, as follows

2 Packard et al. (1980), p713.
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x ( t) = {xo(t), xtI(t) ...... Xm-t(t)},

(3.8)

where

Xn(t) =s(t + n ); n=0,1,2, ..., m-I

Here s is the original time series, 'r the specified time lag and xI,X . Xm-1 are

the individual components of an m dimensional phase space vector x. Fraser

and Swinney (1986) note that for an infinite amount of noise free data, the

time delay t can be arbitrary. However, for noisy or limited data, a small time

delay t may make the components x0(t)and x 1(t) indistinguishable and all

trajectories appear to be on a line x0=xl. To avoid this problem, the time delay 't

must be chosen to make the vectors xo(t)and xi(t) as independent as possible.

Techniques in determining the proper choice for the time delay will be

discussed in later sections.

3.1.3 Trajectories in Phase Space

The trajectory in phase space is said to follow an attractor if its orbits

rapidly return to this subset (i.e. the attractor) after finite perturbations

(Swinney, 1983). Large perturbations could send the orbit out of the basin of

attraction. An attractor is labelled strange if nearby orbits diverge

exponentially on average. This condition is sometimes referred to as "sensitive

dependence on initial conditions" (Swinney, 1983).

3.1.4 Derivation of the Grassberger-ProcacciaAlgorithm

Grassberger and Procaccia (1984) note that "two of the most basic

properties of dissipative chaotic systems are related to information-, the
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Kolmogorov (or 'metric') entropy K and the Renyi-Balatoni information

dimension a." 3 Both K and a relate to the information I(e, T) gained by

observing the trajectory of a system with precision e during a finite amount of

time T. Grassberger and Procaccia (1984) define the precision e as the

uncertainty in the measurements of any of the coordinates of the vector x.

The Kolmogorov entropy is defined as

K E lim lir ( T)IeT)

E-4 0 T -- T

(3.9)

The definition of the Kolmogorov entropy requires making a very long

series of observations as can be s-en from the limit placed on time.

Grassberger and Procaccia (1984) show that since the time limit is taken first,

equation 3.9 implies that the information for a given precision e increases

linearly with time and that the rate of increase tends towards a finite constant

for infinite precision (i.e., infinitely small error).

Furthermore, Grassberger and Procaccia (1984) compare this to an

ordered system where

lia l(E, T) -- 0

T -- oo T

(3.10)

and systems with random noise where

lirn li, T n(I/e) -In (o
T -- oo 

(3.11)

3 Grassberger and Procaccia (1984), p35 . Note that cy is the same as the

previously defined information dimension dl.
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This leaves us with the following definitions for the behavior of the

Kolmogorov entropy:

1. K = 0 for ordered systems,

2. K = -o for random systems, and

3. K = a finite constant for systems characterized by a strange attractor.

To extend this concept to a time series of data, Grassberger and Procaccia

(1983) introduce a new quantity K2 which has the following properties:

1. K)>0,

2. K2_5K,

3. K2 = - for random systems, and

4. K2 # 0 for chaotic systems.

Grassberger and Procaccia (1983) note that K2 > 0 is a sufficient condition for

chaos. The quantity K2 can be calculated in the following manner.

Grassberger and Procaccia (1983) define a new quantity, C(E), which is total

probability that a random pair of points on the attractor will fall into the same

cube of size e in phase space. Grassberger and Procaccia (1984) note that this

probability scales as

C(C) = ev

C:->0

(3.12)

where v is called the correlation exponent. Furthermore, v also approximates

the fractal dimension, dc, of the attractor (Grassberger and Procaccia, 1983).

For a time series of data (xi)iN= ,where Xi = X"(t= it), the correlation

integral, Cm(e), can be calculated from the following (Grassberger and

Procaccia, 1983):
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Cm(e)= lir _k..x (number ofpairs ofpoints (n,k) withIXn- XkI
N-oo N2

(3.13)

Here N is the total number of points in the time series and the time delay 't

equals UAt for some lag X. The subscript m is the embedding dimension and

must be greater than or equal to F, the number of degrees of freedom of the

attractor. The Whitney embedding theorem states that it is possible to embed an

m dimensional geometric object arbitrarily in a 2m+l dimensional space.

Equation 3.13 may be rewritten more precisely by replacing the norm

with an explicit expression for the Euclidean norm in a m dimensional phase

space:

M -1 X 1 2 1 / 2 <Cm(E)= lim N 2 x {number of pairs (n,k) with[ m [n+i -X5k+i[212 £

V(3.14)
This should be the same as (Grassberger and Procaccia, 1983)

Cm(e) = Vexp(-mTK 2 )
M --

£ --. 0

(3.15)

This now gives us a simple way to calculate the fractal dimension as well

as estimating the lower bound on the Kolmogorov entropy. If we plot the

natural logarithm of Cm(E) as a function of the natural logarithm of e for

increasing values of embedding dimension m. we should get a series of

straight lines whose slope is v, the fractal dimension of the attractor and

which are displaced from one another by the factor -mrK2. An example of the
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correlation integral is shown in Figure 3.1. Calculating a value for K2 will

quickly tell us whether the data is ordered, chaotic or random.

In practice, the region of constant slope will only be valid over a limited

range of e which is often called the "scaling" region. This gives equation 3.15

the form

C()= X(e) Ev

(3.16)

where X(E) is a possibly oscillatory function of 0(1) (Smith, 1988). The structure

of X(c) is generated by the sparse or empty regions (lacunae) of the set. Some

of the oscillations in X(e) are also generated from noise and fluctuations due to

a finite number of points.

The Kolmogorov entropy of the attractor can be approximated by

examining the following

K2,,(e) In CM (E)(
It CM~l(3.17)

and then

lim K2.m We = K2

m-4oo

(3.18)

* The Kolmogorov entropy, along with the correlation dimension, can be used to

test for strange attractors in a set of data. An example of using the

Grassberger-Procaccia approximation of the Kolmogorov entropy to determine

the typt; of behavior of a system is shown in Figure 3.2.

Grassberger and Procaccia (1983) demonstrated this technique on the

Mackey-Glass delay differential equation and th( Henon attractor and found
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that this techrnique works for fractal dimensions as large as 7.5 with 30000

data points. However, later research with the correlation integral suggests

that its only practical for determining the dimension of systems with

dimensions on the order of 4 or less (Smith, 1988).

3.1.5 Generalized Correlation Integral

The technique developed by Grassberger and Procaccia (1983; 1984) has

been extended to determine the generalized entropy and generalized

dimension (Hentschel et al., 1983; Pawelzik and Schuster, 1987; Grassberger,

1985). Such generalized quantities reveal important information on the

structure of the attractor.

Atmanspacher et al., (1988) notes that the quantity for characterizing

an attractor as a metric structure is its dim,;nsion. Traditionally, the concept of

dimension has been limited to purely integer values. However, the dimension

can take on non-integer values for chaotic (or strange) attractors. Attractors

with purely integer dimensions correspond to regular (i.e. stationary, and/or

periodic) processes. The concept of a fractal (i.e. non-integer) dimension,

d < m, of an attractor in a m dimension phase space can be derived from

information theory. The information dimension, dI, describes how information

I(E) scales with varying spatial resolution e as previously defined in equation

3.2.

One way to obtain the information I is to break the attractor up into m

boxes of size E. The probability that a point on the attractor falls into the ith

box is given by

Pi = N

N
(3.19)
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where Ni is the number of points in the ith box and N is the total number of

points on the attractor.

Pawelzik and Schuster (1987) define the generalized information of

order q as

I(q)=1.q log pRq

q I

(3.20)

/
A continuous spectrum of dimensions of order q can be defined by substituting

I(q) into the original definition of the information dimension (equation 3.2),

m
log p.

d(q)= lim 1 i=t
E --jolq log(L

log p9
' 1 ____t

q- 1 log(c)
(3.21)

Some of the most frequently encountered dimensions are: d( 0), the Hausdorff

dimension (previously referred to as dh ); d( l), the information dimension

(previously referred to as dl); and d( 2), the correlation dimension

(Atmanspacher et al., 1988). Furthermore, Atmanspacher et al, (1988) observe

I
WBthat

d(q)< d (4) ifq':< q

(3.22)

The equality holds only for completely homogeneous probability distributions,

i.e., Pi = 1/N. The more an attractor "bunches" up (i.e. spends more time
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visiting a particular region of phase space), the less homogeneous the

probability distribution. Differences arise between dimensions of different

order q because of the degree of inhomogeneity of the attractor, i.e., the

degree to which the boxes are visited with unequal frequency.

The correlation integral method proposed by Grassberger and Procaccia

(1983) is based on the correlation dimension v. This has been extended to a

dimension of arbitrary order q as follows

N _ N lqll

(3.23)

where H is the Heaviside step function (H(x)=O if x<O, H(x) = 1 if x_:O), and e is

the size of the box (Hentschel et al., 1983; Pawelzik and Schuster, 1987;

Grassberger, 1985). Notice that this reduces to the original expression of

Grassberger and Procaccia (1983) for order q=2. By analogy, the generalized

entropy of order q may now be written as

K(q) = lim liM (IlnC(q)(E, N))
-On-- ...4

(3.24)

These results can be used for a series of single observations evenly spaced in

time by use of Taken's method of delays. This lets us write the generalized

correlation integral as

C(q)(e, N)= im N] H( q-
f:---0 i I j=1 k=0

(3.25)
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Pawelzik and Schuster (1987) point out that this technique is only

slightly more computationally intensive than the original correlation

algorithm proposed by Grassberger and Procaccia (1983). Most of the

computational effort is spent in counting the number of the pairs of points;

raising the interior sums to the various powers represents only a small

additional burden.

Once a spectrum of generalized entropies have been generated for a

time series, we can determine the spectrum of dynamical fluctuations around

the Kolmogorov entropy. This spectrum can be used to deduce properties and

structure of the attractor (Atmanspacher et al., 1988) or applied to a

description of turbulence (Chhabra et al., 1989; Meneveau and Nelkin, 1989).

3.2 Limitations of the Grassberger-Procaccia Algorithm

The Grassberger-Procaccia algorithm does have a number of

( weaknesses which must be addressed. First, noise in the signal can yield

misleading estimates of the dimension. Second, an inappropriate choice of the

time delay in constructing the phase space vectors can also yield incorrect

estimates of the attractor dimension and may suggest the presence of a chaotic

attractor where there is not one. Furthermore, a limited or non-stationary data

set can introduce errors and require the use of different norms in calculating

the distances between pairs of points.

3.2.1 Noise

Noise affects length scales over a range on the order of magnitude of

the standard deviation of the noise (Ben-Mizrachi et al., 1984). This leads to a

noise length scale region where noise scales as the embedding dimension

(Ben-Mizrachi et al., 1984; Theiler, 1987; Franaszek, 1987). Thus, noise is

proportional to em and has a slope on the In C(e,N) vs In c plots that equals m,

the embedding dimension. The presence of noise reduces the scaling region of

other signals; in systems with a low signal to noise ratio, the scaling region
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may even disappear., The magnitude or amount of noise in the signal can be

determined from the break in the slopes in the In-In plots of the correlation

integral; this break is often referred to as a "knee". The presence of noise in

the signal violates the limit in equation 3.12; you can not take the limit as e

goes to zero because the attractor is not clearly defined for length scales on

the order of the magnitude of the noise.

Furthermore, a limited number of data points has much the same effect

as noise on the slopes from the correlation integral. This occurs because

random noise never completely saturates an infinite dimensional phase space;

a limited data set may not cover the attractor well enough to allow it to be

sufficiently embedded in a 2d+l phase space.

Certain types of noise make it possible to mistake a data set with a finite

correlation dimension as having an attractor. Certain sets of stochastic data

can yield finite correlation dimensions yet are not strange attractors. For

instance, the "random walk" yields a correlation dimension of 1.1 (Ramsey and

Yuan, 1989). Even more disconcerting (especially to those meteorologists who

live and die by the -5/3 power law) is that "colored" random noise

characterized by a power law spectrum can yield a finite correlation

dimension (Osborne and Provenzale, 1989). White noise which has a flat power

spectrum does yield an infinite correlation dimension as indicated originally

by Grassberger and Procaccia (1983, 1984). Osborne and Provenzale (1989)

showed that white noise gives infinite correlation dimensions because the

random noise acts as a fractal path in phase space, leading to self similarity.

3.2.2 Filtering and Digitizing Errors

Filtering and digitizing the data can yield inaccurate estimates of the

dimension of an attractor. Filtering leads to inaccurate dimension estimates in

much the same manner as noise. Data is often filtered to reduce the amount of

noise in a signal, but doing so can lead to an overestimate of the dimension of

an attractor (Badii et al., 1988). On the other hand, digitizing the signal creates
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errors which underestimate the dimension; in this regard it acts in an opposite

manner to noise (Miler et al., 1987). Random noise combined with errors
J

4 introduced during digitizing can create a "false" scaling region which could in

turn suggest the presence of an attractor where there was none.

Mller et al., (1987) suggest that adding Gaussian noise with a standard

deviation equal to 0.4 times the least significant bit before digitizing reduces

the error in the dimension estimate in signals where most of the error is

attributed to digitizing. For signals primarily distorted by noise, adding

Gaussian noise with a standard deviation on the order of the least significant

'bit provides the best improvement in the dimension estimate. Tests run by

M6iler et al., (1987) for both cases show the error in the dimension estimate

can be reduced by a factor up to 80%.

3.2.3 Number of Points

A limited data series (i.e. limited in the total number of points or amount

of the attractor that is covered) leads to a downward bias in the dimension of

random variables and an upward bias in the the estimate of a dimension of an

attractor (Ramsey and Yuan, 1989). Small data set. also lead to conditions where

the correlation integral does not saturate at increasing embedding dimension.

Ramsey and Yuan (1989) suggest a method of non-linear curve fitting that will

allow one to test for the presence of an attractor in a limited data set.

Obviously, there must be some minimum number of points for which

the Grassberger-Procaccia algorithm will yield accurate estimates of the

attractor dimension. The most commonly quoted limits on the number of points

to adequately implement this algorithm is

10,12_ 100,JU2

(3.26)
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where d2 is the correlation dimension (see, for example, Henderson and Wells,

1988).

Smith (1989) provides a more rigorous and detailed formulation of the

minimum number of points needed to obtain an accurate dimension estimate.

Smith gives the number of points necessary to estimate the correlation

dimension of a non-lacunar set to within 5% of its true dimension as

Nmin > 42M
(3.27)

where M is the greatest integer less than the dimension. For example, the

value of M would be 2 for an attractor with a dimension of 2.3.

Abraham et al. (1988) showed promising results in examining the

dimensions of small data sets contaminated by noise. They were able to obtain

the dimension of the Henon attractor for data sets with as few as 500 points.

Note that this fits Smith's minimum criteria; the dimension of the Henon

attractor is 1.24 - hence the minimum number of points needed to estimate its

dimension could be as low as 42! While it was difficult to accurately determine

the dimension from small data sets, Abraham et al. (1988) still felt it was

possible to distinguich between chaotic, periodic and random behavior.

3.2.4 Time Delay

A single time series may not properly fill out phase space if the wrong

time delay for the embedding dimension is chosen. Often, the time to the first

zero in the autocorrelation is chosen as the delay time in constructing the

higher dimension vectors from the time series. Fraser and Swinney (1986)

points out this practice as being "naive"; it may grossly underestimate the

correlation dimension of the attractor in the data. Too small a time delay in the

case of highly autocorrelated data may yield pairs of points that lie close

together because they are closely related in time rather than their lying
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"accidentally" close together because they are on the attractor. Highly

autocorrelated data restricts the trajectories of a signal from "filling" out

phase space, thus restricting the information that may be gained by

examining the distances between them. Figure 3.3 shows an example of a

function with two choices of time delay, one of which fills the phase space and

one of which does not.

Fraser and Swinney (1986) suggest that a better choice of the proper

time delay can be made on the basis of mutual information theory. The mutual

information, I, is defined as

I= f P X,Y) log 2 [ P(XpY)I d X dY

(3.28)

where X is the measurement at time t, Y is the measurement at time t+r, P(X,Y)

is joint probability density and P(X) and P(Y) are the respective X and Y

probability densities. For logarithms taken to base 2, the units of the mutual

information is in bits. The mutual information measures the relationship

between two signals in a more general manner than the autocorrelation,

which measures the linear dependence. Normally, the first zero in the

autocorrelation between two data vectors implies that the two are linearly

independent. However, data characterized by a strange attractor are usually

highly nonlinear, thus making the first zero in the autocorrelation a poor

choice for the time delay. For nonlinearly related data, Fraser and Swinney

w suggest that first local minimum in the mutual information provides the best

choice of time delay in construction of higher dimension data vectors.

However, calculating the mutual information is computationally very
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expensive (Fraser and Swinney, 1986) and often not as enlightening as

repeating the correlation integral calculations for different time delays 4 .

Liebart and Schuster (1989) show the first local minimum in the mutual

information is the best choice for time delay as opposed to some other local

minimum (say the second or third). Their tests show that the first local

minimum in the mutual information helps preserve the small scale structure

of the attractor in the phase space reconstruction. They also point out that this

criterion for the time delay is not "that the reconstructed orbit in phase space

is closest to the true one but that the dimensions and entropies from the

reconstructed orbit are closest to their true values". 5

3.2.5 The Norm

Additional error can 'be introduced by an improper choice of norm used

in the Grassberger-Procaccia method. While all norms are theoretically

equivalent, Havstad and Ehlers (1989) found differences between the

dimensions calculated from using the Euclidean norm and the maximum noim.

The Euclidean norm counts points that fall within spheres while the maximum

norm counts points that fall within cubes. Havstad and Ehlers (1989) found the

maximum norm underestimated the dimension of the Mackey-Glass attractor

wl.reas the Euclidean norm yielded a value for the dimension that was very

close to the true one. They believe that the difference occurs because the

diagonals of the cubes are aligned with the surfaces of the ifttractor. While the

maximum norm is attractive because it is computationally less intensive, only

the more computationally expensive Euclidean norm will be used in this study.

4 Glenn James, personal communication (1989). Glenn James is a fellow AF
Ph.D. type who just recently graduated from Georgia Tech (Winter quarter,

. 1990). He also noted that the mutual information calculations were too much
trouble and "a pain in the . ". ....
5 Liebart and Schuster (1989), p108.
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3.2.6 Non-Stationary Data -Sets

Implicit in this analysis is the assumption that the data set is stationary,

an assumption common to most signal analysis. However, Havstad and Ehlers

(1989) have shown the Grassberger-Procaccia method is acceptable (with some

modifications) for data sets that are not stationary. The dimension for small,

non-stationary data sets can be calculated from small overlapping groups with

reasonable accuracy if the dimension is not more than 10 (Havstad and Ehlers,

1989). However, the number of points in each overlapping segment still must

be the minimum number necessary to implement the correlation integral

algorithm.

Given some of the errors and uncertainties discussed above (small data

sets, noise, a certain degree of autocorrelation, non-stationary data sets), one

of the most difficult problems is defining the scaling region. In many

experimental results, the scaling region is quite small and poorly defined for

limited sets of noisy data. Ellner (1988) has developed an alternate method of

calculating the generalized dimension of an attractor that improves the

discrimination of the scaling region as well as providing an estimate of the

errors. This technique is based on a maximum likelihood method.

Unfortunately, the maximum likelihood method is even more computationally

demanding than the Grassberger-Procaccia algorithm.

ElIner (1988) notes that the maximum likelihood technique offers

several advantages over the technique of Grassberger and Procaccia. For small

data sets, the scaling region is better defined and freer of distortions that

occur because of the finite sample effect. This yields a largr apparent scalinr

region and, in turn, gives a more accurate estimate of the dimension.

Furthermore, the maximum likelihood technique yields a dimension estimate

accompanied by confidence intervals which give the error due to finite

sample size.
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3.3 Extension of the Grassberger-Procaccia Correlation Integral

Additional research has been done examining the strengths and

weaknesses of this technique. One of the biggest disadvantages of the

technique proposed by Grassberger and Procaccia (1983) is the limits in

equations 3.15 and 3.18. These limits impose a requirement for a lengthy time

series and, as pointed out by Theiler (1986), can lead to spurious dimensions if

the number of data points is too small and the data are too highly

autocorrelated. However, Theiler proposes a modification to the technique of

Grassberger and Procaccia (1983) which improves the convergence of the

integral towards its infinite limit for autocorrelated data.

Theiler redefines the correlation integral of Grassberger and Procaccia

(1983) as:

N N-n l

(3.29)

where H(x) is the Heaviside step function, N the total number of points in the

data set and the phase space vector xi is defined as

xi=(si, si+T, Si+2-,'", Si+(m-1),c) where si is the original signal at time t and T the

time delay. Theiler notes that for typical conditions (T, m << N) ,there are as

almost as many vectors xi as there are data points si. The correlation

dimension, v, can be defined by the limit

= logC(e,N)

E- 0 N -4 logE

(3.30)

or where the derivative exists
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d[ log C(e, N)]

V= Eir lirn de
0 N -4c dlog e

de
(3.31)

The limits in the two expressions above provide problems in implementing

this technique in practice.

Theiler (1986) shows that the Grassberger-Procaccia correlation

integral redefined in equation 3.29 can be better served by a more generalized

version

N N-n

C(F,N,W) - Y, Y H(e -Ixin-Xil)
N n=W i=1

(3.32)

W is the number of autocorrelated points to exclude from the counting

statistics. Note that W=I yields the original definition of the correlation

integral proposed by Grassberger and Procaccia (1983). Essentially, this

algorithm doesn't count the first W autocorrelated points that lie nearby.

Skipping these points in the summation improves the convergence of the

algorithm in both limits. Theiler notes that the key to this modification lies in

choosing the right value of W.

Theiler (1986) demonstrated the validity of this modification in

examining uncorrelated and autocorrelated noise. As previously mentioned,

autocorreiation restricts the trajectories of a function from "filling" out phase

space, thus restricting the information that may be gained from examining

the distances between pairs of data points. Highly autocorrelated data may

yield pairs of points that lie close together because they are closely related in

time rather than their lying "accidently" close together because they are on

an attractor.
5-
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Noise has a slope on the C(eN) vs e plots equal to m since noise scales

as em where m is the embedding dimension (Theiler, 1986). Noise has an effect

similar to that for autocorrelation. Autocorrelation and a limited number of

points may unnecessarily restrict the range over which this slope occurs,

creating a "knee" in the plot of In C(e,N) vs. In E at higher embedding

dimensions. Theiler (1986) shows that the usable range of C(e,N,W), i.e. that

range over which C(e,N,W) is proportional toem, will be between

a. Uncorrelated limit - 2/N 2 and 1, and

b. Autocorrelated limit - 2/N 2 and 2/N.

As the number of data points approaches infinity, the autocorrelated range

may approach the uncorrelated limit.

Given this, Theiler suggests a minimum value for W which extends the

usable range for the slope:

(3.33)

where r is the first zero in the autocorrelation, N the number of data points

and m is the embedding dimension. This is equivalent to dropping the first W

terms in the summation series in the correlation integral. By dropping the

first W terms, the summation neglects the points that are nearby because they

are correiated in time and thus approaches its true limit.

There are two different time scales which must be considered in

employing the Grassberger-Procaccia algorithm. The time scale of the first

minimum of the mutual information determines the best lag for the

reconstruction of phase space vectors from the original data. The time to the

first zero in the autocorrelation determines the number of autocorrelated data

points to exclude from the summation in the correlation integral.
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3.3.1 The Normalization Factor

There is some question about the normalization factor used in the

correlation integral algorithm and its variations. In the original definition by

Grassberger and Procaccia (1983, 1984), the normalization factor was 1/N2 .

However, it was seen that the number of calculations could be halved by only

determining the distances for the upper half of the matrix which held the

pairs of points (i.e., the distance between point i and point j is the same as the

distance between point j and point i -- why repeat the calculation?). The

normalization factor was further modified by Henderson and Wells (1988) to

2/N(N-1) by not calculating the identity (sometimes called "self pair") terms

(i.e., those terms for which i=j). Smith (1988) noted that the "self pair" terms

must be calculated explicitly and included in the full double summation. This is

required to distinguish the scaling of true noise from fluctuations due to a

finite number of points N. When the "self pair" (i=j) terms are omitted, the

correlation integral is not necessarily bounded in the limit as e approaches

zero.

3.4 Autocorrelation Analysis

The autocorrelation analysis is based on the correlation function which

is defined as follows (Walpole and Meyers, 1989):

Sxyr-
SXX SVV

(3.34)

where Sxx, Syy and Sxy are given by
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SxI

i=1 N M1NN 2

NY NM 2

N N N
Sxy=YXiyi.-- ]xx , yi

j=1 N M i,,
(3.35)

The individual components in the summation are defined as

xi = x(iAt)
yi = x((i + %),&t)

(3.36)

where xi is an element of the original time series x, At is the sampling interval

and Yi is an element of the original time series x lagged by some factor X.

The correlation was calculated for each lag X. The error of the

autocorrelation is defined as

[N(N + 2)]
(3.37)

The errors were calculated but are not displayed on the figures shown in this

study simply to render the figures more readable. The number of points in the

autocorrelation were chosen to minimize the error.
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3.5 Power Spectrum Analysis

We will use the method of calculating the power spectrum as described

by Press et al., (1986). The "power" calculated in this study is the mean squared

power defined as

N-1

P- Ic(t)j2dt 2: 1cj 2

(3.38)

where A is the sampling interval, N the number of points and T=(N-1)A. The

power (P) is defined as a function of frequency (f) at N/2+1 discrete

frequencies by

N
2

P(fk) = I [Ick12+1CNkI2; k=1,2.....
N 2 2

P(f) = -1 cN/212
N 2

(3.39)

where the frequencies fk and fc are defined as

f _ = .
2A

fk = k -=2f -k ; k=O, 1, N
NA N' 2

(3.40)

and the Fourier coefficients ek are defined by the following
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( N- i
Ck -- cje2 niik/N ; k=0, 1, ... , N-I

j=0
(3.41)

The "Welch" window was used on the data when applying the Fourier

transform (Press et al., 1986). The data was segmented to obtain the smallest

variance of the power for the number of data points in the transform. The

segments were overlapped by half their length M and the variance was

reduced by a factor of 9k/I I where k is the number of segments. The number

of data points required by the transform is (2k+)M.
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Figure 3.1 Correlation integral of the sine function with period equal to

thirty with 10% external noise. The total number of points is

2000.
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Figure 3.2 Kolmogorov entropy (K2) for the correlation integral of the sine

function shown in Figure 3.1 plotted as a function of increasing

embedding dimension. The curve asymptotically approaches the

value of 0, indicating periodic behavior.
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CHAPTER IV

OVERVIEW OF THE DATA

This chapter gives an overview of the data used in this study. It first

describes the theory behind the partial reflection radar from which the data

was obtaincd. This is followed by a description of the Saskatoon partial

reflection radar itself. The chapter concludes with a description of the data

from the Saskatoon radar used in this study.

4.1 Theory of Partial Reflection Radars

Partial reflection radars transmit an electro-magnetic pulse which is

both partially and totally reflected in the middle atmosphere. The reflected

signal creates a diffraction pattern on the ground which moves at a rate twice

the speed of the wind in the scattering layer at which the reflection occurred

(see Figure 4.1). This induces an e.m.f. in a stationary antenna. As the pattern

moves past the antenna, the induced e.m.f. varies in amplitude; this is called

radiowave fading. Normal signal analysis of partial reflection radar data

revolves around cross correlation of the signal peaks between antennas to

deduce the direction and speed of the wind. Comparisons of the fading rates

from at least three antennas give an estimate of the horizontal pattern

velocity and hence the velocity of the reflecting/scattering region.

The mechanisms causing the echoes range from reflections from

sharply bounded irregularities in the refractive index,, to scattering (i.e.,

"partial reflections") from quasi-isotropic irregularities ("turbulent blobs")

whose scales are on the order of half the radar wavelength. At the altitudes
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measured by partial reflection radars (typically 50 - 120 km, depending on the

design and sensitivity of the radar), irregularities in the refractive index can

be created by free electrons carried along by the neutral wind as well as

variations in potential temperature and moisture content (Hocking, 1985).

Short wavelength solar radiation ionizes the air in the upper atmosphere and

generates free electrons; concentrations of these free electrons typically vary

from less than - 102 cm- 3 at 60 km to- 104 cm- 3 at 100 km (Gregory and

Stephenson, 1972).

The refractive index varies primarily in the vertical, a consequence of

the increase in the free electron density with height as well as changes in the

potential temperature with height. The signal strength generally increases

with height because of the vertical gradient in the refractive index. However,

there are horizontal variations in the refractive index which modulate the

transmitted pulse wave front so that the scattered/reflected wave is equivalent

to an angular spectrum of plane waves. The horizontal variations in the

refractive index can be either a result of horizontal variations in the potential

temperature caused by turbulence or wave activity or horizontal variations in

the free electron density or a combination of both. This spectrum of plane

waves creates the diffraction pattern on the ground which is measured by the

receiving antennas (Fraser, 1984).

Echoes can be obtained from minimum heights of 50-60 km to heights

where the signal is totally reflected in the E or F region of the ionosphere1 .

The lower altitude limit is essentially a function of the sensitivity of the system
to signals that are only partially reflected in the lower mesosphere. The spatial

characteristics of the partial reflection regions vary from thin, stratified

t layer- to thick, turbulent layers. The thin, stratified layers are often less than

1 km thick (Fraser, 1984). Measurements made near local solar noiii can be

influenced by the D region of the ionosphere which extends further down into

IThe E region spans the altitude range 90- 150 km. The F region encompasses
150 - 500 km (Kelley, 1989).

66



the mesosphere2 . The effects of the geomagnetic field on the motions of the

free electrons must be considered at heights where the electron-neutral

collision frequency is low. This effect does not appear to be significant at

heights below 95-100 km (Fraser, 1984).

4.2 Saskaloon Partial Reflection Radar

The data used in this qtudy came from the partial reflection radar

located at 520 N, 1070 W in Saskatoon, Canada. This radar operates at an average

frequency of 2.2 MHz with an equivalent wavelength of 135 m. It emits an

approximately trapezoidal pulse with a width of 20 Its; this is equivalent to a 3

km height resolution (Manson et al., 1974; Gregory and Stephenson, 19,12;

Manson and Meek, 1987; Meek ard Manson, 1987). Data are recorded for 23

height levels ranging from 52 km to 118 km in 3 km increments. The pulse

repetition rate used for this data set is 15 s- 1. Data below 70 km is considered

unreliable (Meek, 1989, private communication).

The radar consists of a transmitter and four receiving antennas. The

receiving antenna array i. laid out in a "Y" pattern with a separation between

antennas 1, 2 and 3 of 2X (270 in), twice the wavelength of the radar. The

receiving antenna array is depicted in Figure 4.2. Measurements are taken at

each of the four antennas as the recording system cycles around the antenna

array at a rate of 15 Hz; this yields the 0.2666 second measurement separation

between measurements at each antenna.

4.3 Overview of the Data

The data set was taken on 2 August (day of year 214) 1985 starting at

18:31:00 GMT and covers approximately one and a half hours (a total of 17910

2Thc D region is less than 90 km altitude.
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points). The data set has been described previously in the literature by Manson

and Meek (1987). Manson and Meek (1987) found several "glints" or regions of

focused turbulence in the data set to be used in this study.

The data were broke' down into three separate files. There is a time gap

between the files due to data recording considerations. The first file started at

18:31:00 GMT, ended at 19:01:12 GMT and consisted of 6705 points. There was a 2

minute 16 second gap between the first file and the second file which is

equivalent to 510 points. The second file began at 19:03:28 GMT and ended at

19:29:36 GMT for a total of 5895 points. There is a gap of approximately 40

seconds between the second and the third files which is equivalent to 146

points. The third file began at 19:30:15 GMT and ended at 19:53:50 GMT for a total

of 5310 points. The total number of points, not counting the breaks between

files, is 17910.

A careful examination of the raw data record seemed to reveal an

undocumented change of gain between the first and remaining files. The

apparent change in gain was signalled by a 20 second dropout in signal just

prior to the end of the first file (i.e., at point 6610). We calculated the variance

of the data for the first 6000 points and con it ared that to the variance of the

remaining points for the seven levels between 76 and 94 km. The results of

these calculations are summarized in Table 4.1. The average ratio of the

variances over all seven levels was 3.08 which is very close to what you would

expect from a 10 db (i.e., a ratio of 3.16) chang,: in gain.

We used the F test (Walpole and Meyers, 1989) to determine whether the

variances were irndeed the same., We were able to reject the hypothesis that the

variances were the -ame for each level at the 99.995% confidence level. Thus,

it is safe to conclude that there was an undocumented gain change between

the first and the remaining files.
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Table 4.1 Summary of mean and variance changes in the data.

1 < n < 6000 7000 < n < 17900 Ratio of two

Level (kin) Mean Variance Mean Variance variances

76 101.4 306.4 103.8 99.8 3.07

79 100.4 969.7 104.4 680.3 1.43

82 99.0 1569.8 102.6 401.3 3.91

85 100.3 1052.6 102.9 413.3 2.55

88 98.1 1024.2 102.3 288.7 3.55

91 111.8 2341.9 108.4 400.9 5.84

94 115.4 958.0 113.9 774.8 1.24

There is also a difference in the mean signal strength for each of the

seven levels between the first file and the last two files. We used the Student t

test to determine whether the means belonged to the same population. We were

able to reject the hypothesis that the mean from the first file and the mean

from the second and third files at each level belonged to the same population

at the 99.95% level. The change in mean over the approximate hour and a half

that is spanned by the data set is most likely due to receiver drift. Meek

(personal communication, 1989) reports that the data should be corrected for

receiver drift for observation periods longer than an hour.

The variance is low for the 76 km data compared to that for the other

levels above 76 km. In general, the signal strength increases with height.

There was very little variation in the signal for levels below 76 km which is

why data from these levels were not even considered beyond some

preliminary eAamination.

We tested for receiver drift over the lengtn of the first file by

calculating the mean and variance in 500 point groups from point number one

to point number 6500 for each of the seven levels (76 through 94 km). The

hypothesis that the means for each level belonged to the same population was

accepted at the 95% confidence level. While this hypothesis was not accepted at
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a more rigorous confidence level (i.e., one > 95%), it seems reasonable to

assume that any receiver drift over the first data file (a period of

approximately 30 minutes) was minimal.

These two problems, receiver drift and change in signal gain, could be

corrected, The drift in the mean could be easily remedied by detrending the

data. The change in the gain could be eliminated by subtracting out the

detrended mean, multiplying by the ratio of the variances and adding back the

mean. While making any changes to the original data increases the risk of

rendering any dimension estimates inaccurate, these changes represent the

least significant risk. However, there was one additional problem that

eliminated almost two thirds of the data from consideration.

In addition to the gain change, the data in the second and third files

appeared to be contaminated by a high frequency oscillation. This was almost

certainly due to a folding back of some portion of the long range signal into

the lower height gates. The oscillation can be seen clearly in the

autocorrelation (see Figure 4.3) and power spectrum (see Figure 4.4) of data

from the second and third files. The oscillation was present in the signal at all

of the heights (76-94 kin) to be used in this study, but it was strongest in the

data from 91 and 94 km. The oscillation occurred with a period of .867 s, which

is slightly greater than every third point.

Filtering the data could easily remove this high frequency signal.

However, doing so would increase the uncertainty in any estimate of the

dimension of the system and possibly suggest the presence of an attractor

where there was none. Because of this, we decided to eliminate data from the

second and third data files from further analysis. Only data from the first file

(6705 points - 18:31:00 to 19:01:12 GMT) was considered in further analysis.

The data for each of the four antennas and seven levels from 76 to 94 km

is shown in Figures 4.5 - 4.8. The data shown in the figures was averaged over

3.5 s and only every thirteenth point was plotted in order to improve legibility.
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Several features are immediately obvious from examining the data. The

variation in the signal for levels 76 and 79 km is generally much less than for

the upper levels for all antennas. In addition, the variation in signal strength

is slightly less at all levels for antenna #4 than for the other three antennas.

Meek and Manson (1987) found a strong scattering layer to be located at

82 km in a previous study of this data set. The variation in signal strength then

increases again for 91 and 94 km. This phenomena can be most easily seen in

the data from antenna #4 shown in Figure 4.8. The presence of a strong

scattering layer near 82 km is often seen in the summer mesosphere (Fraser,

1984).
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Motion of the pattern
Q-Antenna

~Diffraction pattern

Figure 4.1 Depiction of a diffraction pattern on the ground moving past the

antenna array. The antennas are shown by the squares and the

direction of motion of the pattern is indicated by the arrow.
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I Receiving array
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Figure 4.2. Receiving array of Saskatoon radar in the Y configuration,

(adapted from Meek and Manson, 1987)
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Antenna #1

0.8 Level = 94 km
14000 < n < 16000
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Figure 4.3 Autocorrelation for antenna #1 at 94 km for points 14000

through 16000 (i.e., data from the contaminated third file).
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Figure 4.4 Power spectrum for antenna #1 at 94 km This includes the data

from the contaminated second and third files.
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Figure 4.5 Data from antenna #1 for (a) 76 kim; (b) 79 km; (c) 82 kim (d) 85

km; (e) 88 km; (f) 91 km; and (g) 94 km. The data starts at 18:31:00

GMT. The figure is on the following pages.
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I

Figure 4.6 Data from antenna #2 for (a) 76 km; (b) 79 km; (c) 82 kin; (d) 85

km; (e) 88 kin; (f) 91 kin; and (g) 94 km. The data starts at 18:31:00

fGMT. The figure is on the following pages.
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Figure 4.7 Data from antenna #3 for (a) 76 km; (b) 79 kin; (c) 82 km; (d) 85

km; (e) 88 km; (f) 91 kin; and (g) 94 km. The data starts at 18:31:00

GMT. The figure is on the following pages.
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Figure 4.8 Data from antenna #4 for (a) 76 kin; (b) 79 kin; (c) 82 km-; (d) 85

kmn; (e) 88 kin; (f) 91 kin; and (g) 94 km. The data starts at 18:31:00A GMT, The figure is on the following pages.
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CHAPTER V

ANALYSIS AND INTERPRETATION

This chapter contains the results of the analysis of the data and the

interpretation of those results. It first describes how the Grassberger-

Procaccia algorithm was applied to the data, followed by the results of that

analysis. Analysis of the power spectra of the echo data from the partial

reflection radar follows. The chapter concludes with the interpretation of

results from the implementation of the Grassberger-Procaccia algorithm.,

5.1 An is

Determining the optimum time delay for building the phase space

reconstruction of the attractor is the first step in applying the Grassberger-

Procaccia algorithm. We will use the first local minimum in the mutual

information as the best time delay and the first zero in the autocorrelation to

determine the number of autocorrelated vectors to exclude from the

summation in the correlation integral, i.e., the value of W from equation 3.32.

5.1.1 Calculating the best choice for time delay

The mutual information was calculated from equation 3.28 with up to 200

lags. The radar data ranges from a minimum value of 0 to a maximum value of

255; the integral was divided into boxes with sides AX and AY of length 10. This

box size was chosen to provide the best convergence for the integral over the

entire range of lags; The mutual information was calculated using the first

6000 points of the data from each of the four antennas. It was not possible to

108
Ci



b

calculate the mutual information for a smaller number of points because the

probabilities would not be statistically valid. An even larger number of points

would have been desirable.

The results of the mutual information calculation are depicted in

Figures 5.1 - 5.4. In general, the mutual information drops off very quickly

with increasing values of lag. There are some oscillatory characteristics at

larger lags but they are small in amplitude. The lag for which the first minima

in the mutual information occurs is summarized for each level in Table 5.1; the

subscripts indicate the antenna for which the calculations were performed.

Table 5.1 Laa for the first local minimum in the mutual information.

Level (km) Tl T2 T3 T4

76 12 10 9 12

79 18 20 19 18

82 17 19 18 19

85 15 19 18 15

88 14 17 16 16

91 22 19 17 17

. 94 13 17 14 18

5.1.2 Autocorrelation

The autocorrelation was calculated up to a maximum of 200 lags using

equation 3.35. The maximum error according to equation 3.37 was less than

0.05% at the two hundredth lag. The data for each level and antenna was

f divided into three 2000 point groups (1 < n :_ 2000, 2000 < n _< 4000, 4000 <

n s 6000) and the autc(orrelation was calculated separately for each group.

The autocorrelations for each antenna and level are shown in Figures

5.5 - 5.8. As with the mutual information, the autocorrelation exhibited some

G
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oscillatory behavior as a function of lag. In general, the autocorrelation was

smoother and not as noisy as the mutual information.

The average lag (k) at which the first zero in the autocorrelation occurs

for each level and antenna is summarized in Table 5.2. The average lag is the

average of the first zero of the three 2000 point groups. The subscript of ,

indicates the antenna.

Table 5.2 Lag W for the first zero in the autocorrelation.

Level (km) X1 X-2 X,3 X4

76 24 9 8 8

79 20 18 17 20

82 22 22 28 28

85 11 10 10 11

88 15 16 13 18

91 18 18 18 18

94 15 15 17 18

5.1.3 Calculating..W

Since we intend to use Theiler's modification of the Grassberger-

Procaccia algorithm, we must use the information from Tables 5.1 and 5.2 to

calculate the value of W (see equation 3.33), the number of autocorrelated

vectors to skip in the summation. The value of W for each antenna and level is

summarized in Table 5.3. The subscript again indicates the antenna. The

calculation is based on a total of 1500 points and a maximum embedding

dimension of 13. The values have been rounded up to the next greatest integer

since Theiler's modification of the Grassberger-Procaccia algorithm employs

integer values of the time step in the summation.

1
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Table 5.3 The value of W for each antenna and level N=1500, m=l3).

Level ,(ki) W W3  ,, W4

76 9 4 3 3

79 8 7 7 8

82 8 8 11 11

85 4 4 4 4

88 6 6 5 7

91 7 7 7 7

94 6 6 7 7

5.1.4 Implementing the Grassberger-Procaccia algorithm

We will use Theiler's (1986) modification of the Grassberger-Procaccia

algorithm to calculate the base statistics necessary to estimate the dimension of

the system. The exact algorithm implemented in this analysis is given by

N N C .1-LN) -I H (Xi+k"xj+k)2
mi = j =i+ W k 0

(5.1)

where N is the number of points in the data series, x is the reconstructed phase

space vector, e is the "search" radius, H is the Heaviside function and W the

number of autocorrelated vectors to skip (see preceding section for the values

of W).

We used the normalization factor, (2/N(N-1)), which did not include the

calculation of the "self pair" terms nor did we perform the summation over the

full range of indices. Both of these decisions were based on the desire to reduce

the number of calculations since the amount of computer time required by the

algorithm grows by the square of the number of points. Tests run on known

attractors, strange and periodic, and noise (i.e., the Henon attractor, a sine
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function of known period and Caussian noise) with a limited number of points

(<1000) revealed no convergence problems in the correlation algorithm as

described by equation 5.1. Since the Grassberger-Procaccia algorithm is widely

used by experimenters without calculating the full double summation or the
"self pair" terms and our tests showed no decrease in convergence, we decided

to use the computationally less demanding form given by equation 5.1.

The algorithm was optimized for the data set. The correlation integral

was calculated for 150 values of e evenly spaced logarithmically over the

interval from In c=1 to In E=7. This was repeated for 12 different values of

embedding dimension from 2 through 13. Because of the likelihood of the data

set being non-stationary, the algorithm was applied to overlapping 1500 point

groups. Each group overlapped the previous group by half the number of data

points in the analysis. Thus, the calculations were repeated for the following

seven groups of points:. 1 < n < 1500; 750 < n _ 2250; 1500 < n 5 3000;

2250 < n < 3750; 3000 < n < 4500; 3750 < n < 5250 and 4500 < n < 6000. A

limited number of runs were done for 5000 points. Each set of calculations was

repeated for each level (76 through 94 kin) of each antenna. This resulted in

over 196 separate sets of calculations.

All the calculations were performed on either a Macintosh Ilcx or

Macintosh 1Uci computer. FORTRAN was used for all computer programs.

A representative set of plots of the correlation integral for each level is

shown in Figure 5.9. The set of points was chosen arbitrarily as was the

antenna. This set of figures is entirely representative of all the overlapping

segments for all levels for each of the antennas. The entire set of calculations

* is represented by the graphs shown in Appendix A.,

5.2 Power Spectrum Analysis

The power spectrum was implemented upon the basis of equations 3.39-

3.41. The Fast Fourier Transform (FFT) from Press et al, (1986) required the
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number of points analyzed to be a power of 2. To obtain a power spectrum

which extended out to the 'uoyancy period (-5 min) required a total of 8192

points. This exceeded the total number of points in the first file. Consequently,

some data (a total of 1487 points -- approximately 6 min 36 s) from the second

file were included in the power spectrum calculations. We did not correct for

the gap between the first and second file.

We performed tests on data with a known period to determine the degree

of aliasing introduced by the time gap between the files. Tests showed that

there was some aliasing but also that it was not expected to be a major source of

error. Any errors introduced by not correcting for the time gap are on the

order of errors introduced by the change in variance of the data from the

second file.,

The power spectra for antennas I through 4 at all levels are shown in

Figure 5.10-5.13, respectively. Note that the x axis represents the period and is

depicted in reverse order. This was done to give the figures the more common

(appearance of power spectra as a function of frequency. Interpreting the

power spectra as a function of period is the same for frequency as long as one

bears in mind that the slope of any power law behavior will be the negative of

what you would normally expect.

The power spectra exhibited the same general characteristics for all

levels and antennas. Each power spectrum had three (sometimes four) distinct

regions. The power spectra were flat for periods less than 1-2 seconds. In

general, the spectra were flat for periods less than 2 seconds for 76 kin; this

* region decreased to periods Ie3s than approximately 1 s at 94 km. The flat

region was followed by a region that clearly exhibited power law behavior

(i.e., constant slope on a log-log plot); this usually occurred in the period

range between 1-2 and approximately 6-10 s. Weaker power law behavior (i.e.,

the slope on the log-log plot was not well defined) occurred in the region

between approximately 10 and 200 s. Each power spectrum contained the peak

energy in the longest period, near the Brunt-VAisllA period for the
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mesosphere. Power spectra for antenna #4 were qualitatively similar to those

for the other three antennas except that the power over the entire spectrum

was less. This is most likely due to the reduced variance in the data from

antenna #4 described in Chapter IV.

To further understand the behavior described by the power spectra, we

fit different portions of the power spectra to a power law. These results are

shown in Figures 5.14-5.17. The fitted power slopes for the stronger power law

behavior (i.e., between 1-2 s and 6-10 s) are summarized in Table 5.4.

I,
Table 5.4 Slope for power law curve fits between 1-2 and 6-10 s.

Level Antenna Antenna Antenna Antenna Average

(km) # 1 #2 #3 #4 Slope

76 7.0 5.3 5.7 5.2 5.8

79 5.0 6.6 5.5 - 5.7

82 2.7 2.3 2.7 1.9 2.4

85 3.0 2.9 3.0 2.4 2.8

88 3.4 1.5* 3.1 3.0 2.8*

91 2.9 1.5* 3.5 2.4 2.6*

94 3.7 2.1* 4.2 4.0 3.5*
*These slopes are distinctly different than those for the other antennas. The

average includes these values.

We must be careful in interpreting the apparent power law behavior.

There has been almost no work done on interpretation of power spectrum

analysis of echo data from partial reflection radars and we should be cautious

in treating it in the same manner as that for horizontal and vertical winds.

Hocking (1985) defines the length scale for the viscous region in the

mesosphere as less than 3-6 m at 70 km and less than 20-30 m at 90 km. In the

viscous region, the kinetic energy of turbulent eddies is diminished by viscous

effects and dissipated as heat.
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The length scale for the buoyancy region in the mesosphere is greater

than 60-1000 m (Hocking, 1985). At large scales, the buoyancy effects become

important. In the buoyancy region, the turbulent eddies take on a "pancake"

like appearance (Hocking, 1985) and consequently, the horizontal length

scales are much greater than the vertical length scales.

The inertial region ties between the viscous and buoyancy regions.

Hocking (1985) notes that the break in the slope of power spectra between the

viscous and inertial regions occurs at length scales two to four times the

length scale of the viscous region.

The flat region in the power spectra corresponds to the amount of time

it takes the smallest size eddy that can be detected by the radar (i.e.,

approximately 70 m) to be advected past the radar. The maximum period of the

flat region decreases at higher levels because of the general increase in the

wind speed with height. Meek and Manson (1987) give the wind speed at 76 km

as approximately 30 m s-1, increasing to approximately 60 m s- I near 94 km

for this time period at Saskatoon.

The region between 1-2 and 6-10 s is most likely the viscous region.

While the radar can not detect turbulent eddies small enough to be in the

viscous region, it can detect variations in the motion of the echo patterns that

occur on time scales which correspond to the viscous region. The power

spectra length scales for the viscous region can be calculated from the period

using the multiplicative factor from Hocking (1985), the wind speed and a

factor of 2n; they correspond to those given by Hocking (1985). This

interpretation assumes the Taylor hypothesis, i.e., the eddies causing the

diffraction pattern are "frozen" and do not evolve with time as they pass over

the receiver array. Power law behavior in the viscous region is commonly

described by
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E(k) k 7

(5.2)

where k is the horizontal wave number. The region over which the power law

behavior is valid increases with height because so does the length scale for

the viscous region. Note that the slopes for the power law behavior (see Table

5.4) for 76 and 79 km are almost as large as -7. This behavior does not hold for

altitudes above 79 km.

The region between approximately 10 and 200 s is the inertial region.

This region exhibits much weaker power law behavior than the viscous

region. Some power law curve fits for this region are shown in Figures 5.14 -

5.17. The radar does directly detect eddies on the length scales of the inertial

region. This, combined with fluctuations of the wind speeds on time scales

equivalent to the inertial region length scales, may explain the departure of

the power law curve fit from the commonly expected -5/3 behavior.

5.3 Interpretation

The first step in interpreting the output of the correlation integral

algorithm lies in determining the slope as a function of e. Once the slope has

been calculated, we can determine if there is an attractor present and its

dimension. First, let us discuss how to interpret the slope as a function of e.

5.3.1 Interureting the Slope as a Function of E

The slope of the lines from the correlation integral algorithm should

equal the fractal dimension of the attractor when plotted on a In-in graph. The

plot of the slope of the natural logarithm of the correlation integral against

the natural logarithm of the radius e can be divided into four distinct regions.

1
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Each region yields information on the algorithm and the underlying attractor.

Figure 5.18 shows a idealized diagram of such a plot.

Region A in Figure 5.18 is the section where the statistics are limited by

the number of points in the data set. The slope in this region starts out near

zero and often is characterized by some oscillatory behavior. The slope is zero

because the number of points in a "ball" of radius e approaches zero as C

approaches zero. Oscillatory behavior is the result of fluctuations in the

counting statistics because of the limited number of data points.

Region B is dominated by instrumental and external noise. The slope is

proportional to the embedding dimension. In this region, the "balls" are

smaller than the smallest temporal and spatial scale of the attractor. Often, the

slope will only approach the embedding dimension; this occurs primarily at

the higher embedding dimensions because there aren't enough points to

adequately saturate higher dimensional spaces.

There will always be a transition between regions A and B for data sets

where there are a finite number of points. As the number of points increases

this transition would occur at increasingly smaller values of E.

Region C is the "scaling" region. This region is characterized by

constant slope which, at high enough embedding dimension, should equal the

fractal dimension of the attractor. The slopes should converge to a common

value for embedding dimensions equal or greater than 2d+l since this

dimension phase space will completely embed the attractor. The width of the

scaling region is vital. The limits imposed on the original definition of the

correlation integral necessitate a scaling region which spans several orders of

magnitude. Noise reduces the width of the scaling region and may make it

difficult to discern. A high signal-to-noise ratio yields a larger scaling region

whereas signals characterized by a low signal-to-noise ratio will have a very

small scaling region or may not have one at all.
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There may be multiple scaling regions present in region C if there are

attractors of different length scales present in the data. Multiple attractors in

*. the data would lead to distinct plateaus in the slope diagram.

Region D is characterized by the slope converging to zero. As 6

increases and approaches the size of the attractor, the "balls" contain nearly

the total number of points in the system. Thus the slope approaches zero. In

some systems, the transition from region C to D is characterized by a small

"hump" or region of higher slopes. This "hump" occurs because of edge effects

of the "balls" used to count the points and curvature of the attractor

(Brandstater and Swinney, 1987).

5.3.2 Calculating the Slope

The slope of the lines in Figure 5.9 was calculated using a seven point

least squares fit (the algorithm was taken from Press et al., 1986). The slope

calculated for each point was the least squares fit of the point extending three

fpoints on either side. The errors of the least squares fit were calculated but not

displayed so as to render the figures more legible.

The results of this analysis are shown in Figure 5.19. Examination of the

figures reveals no apparent scaling region for any level., The data set seems to

t'e characterized by noise for times scales less than 6 min 40 s (i.e., 1500

points). There may be a higher dimension attractor in the data but it can not

be detected with only 1500 points and thus will appear as noise. While

recognizing this possibility, we will consider the results to be noise for

purposes of discussion. The slopes of the entire correlation integral analysis
a

are given in Appendix B.
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)5.3.3 Why Noise?

There does not appear to be an attractor in this data set. Noise seems be

present in the signal for all time scales that were investigated. This leads us to

the question -- why have we found only noise and should we have expected it?
The lack of positive results may be attributed to one or any combination

of reasons. These fall into three broad categories: difficulties with the

algorithm, difficulties with the data and an invalid hypothesis.

) 5.3.3.1 Difficulties with the algorithm

As was previously described in Chapter III, the Grassberger-Procaccia

algorithm has a number of weaknesses that make it difficult to implement.

Among these are the finite size of the data set, noise (both instrumental and

external) and the inability of the algorithm to detect the presence of an

attractor amid a wide spectrum of competing signals.

The idealized models of gravity wave breaking invoke a single

monochromatic wave that becomes unstable at some point as it travels upward.

This is almost certainly not the case in the atmosphere; instead of a single

monochromatic gravity wave, there is an entire spectrum of gravity waves

which travel in packets. As pointed out earlier, the spectrum of wv.ves gives

rise to nonlinear wave-wave interaction.

It is not known whether the Grassberger-Procaccia algorithm could

pick out the presence of a strange attractor in such a sea of competing signals,

some of which might have time scales on the order of the attractor. While

there has been a limited investigation into the use of the algorithm in the

presence of two competing signals, its use on a spectrum of signals remains

largely unexplored.,

The limited size of the data set could also prevent detection of an

attractor, especially if the dimension is greater than 3. The 1500 point case is

not adequate to accurately estimate the dimension of systems with dimensions
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greater than or equal to 2. However, 1500 points should be sufficient to test for

the presence of an attractor of dimension 3 or less.

We did perform a limited set of calculations using 5000 points for 82 and

85 km. The data analyzed was an average of all four antennas. Unfortunately,

these calculations were performed with an incorrect value of the time delay

used to reconstruct the phase space vectors; the value of the time delay was

only 2 instead of the values given in Table 5.1. The results of these calculations

are shown in Figure 5.20. From the plot of the slope as a function of c, there

doesn't appear to be an attractor in this data set for the 5000 point time scale

(i.e., 22 min 13s). While it is true that these results are not as reliable as those

for the 1500 point cases because of the incorrect choice of time delay, the

greater number of points makes the exact choice of the time delay less crucial,

especially since we found only noise. Had the 5000 point case suggested the

presence of an attractor, we would be inclined to interpret the results with

more caution. We look upon the 5000 point case as further support for the

absence of an attractor and there only being noise in this data set.

The degree of autocorrelation and the lack of general independence as

determined from the mutual information also reduces the useable size of the

data set and contributes to the problems in the algorithm from a limited

number of points.

The noise in the signal is the biggest problem. There may only be noise

in the data on the time scales examined here or the signal-to-noise ratio may

be so low as to completely obscure the scaling region of an attractor. The

degree to which the noise is instrumental or external will be touched upon in
S

a later section.

5.3.3.2 Difficulties with the Data

The problems associated with the data fall into two categories: no

gravity waves in the data set and the quality of the data itself. The issue of data

quality overlaps some of the limitations of the Grassberger-Procaccia
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algorithm that have been discussed in previous sections. The second problem

is not really a problem but a statement of fact: we found nothing but noise in

the data because there really was nothing but noise in the data. First let us

discuss the quality of the data itself.

The biggest problem that occurred was the high frequency "ringing"

present in the data in the second and third file. This so contaminated the data

that some preliminary analysis of these signals suggested the presence of an

attractor with finite dimensions until the cause was discovered. (The plots of

the original data set that were supplied to us indicated no such r-oblems). As

mentioned earlier, this high frequency contamination of the data precluded

the use of almost an hour of data, thus severely reducing the size of the data

set., This exacerbated the problems that occur with finite data sets as described

in previous sections.

'" addition to the "ringing", gain changes and drift in the receiver

presented an additional source of error. While each of these problems could

have been corrected, doing so would have introduced an additional degree of

uncertainty into any dimension estimates. These problems precluded use of the

last two files.

The elimination of almost two thirds of the data set emphasizes the

Grassberger-Procaccia algorithm's need for lengthy data records. Data analysts

always complain they could use more data, but in this case it seems to be an

absolute necessity., Without a sufficient number of points, the entire algorithm

is not statistically valid.

This data set may contain no evidence of gravity wave breaking. The

data set was originally suggested to us as one that potentially contained

evidence of gravity wave breaking.

Meek and Manson (1987) used this data set to examine "glints" in the

pattern of echoes at the receiver. The "glints" were regions of strong

persistent echoes that travelled in a straight line through the receiver array.
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They speculate that the glints were either long lived pockets of turbulence or

focusing of the signal due to favorable alignment of surfaces of the wave.

Meek and Manson (1987) found two glints in the data set from day 214

that has been examined in this study. The first glint was observed between

18:31:24 and 18:34:36 GMT as it travelled through the receiver array. The

second glint was observed between 18:47:48 and. 18:49:24 GMT. The velocity of a

glint could be deduced by tracking the amount of time it took to cross the

receiver array; Meek and Manson (1987) estimated that both glints had

velocities of - 50 m s- 1. If the glints were caused by focusing of the turbulence

along the surface of a wave, the period of the wave can be ded aced from the

difference in time between the glints. The period of a wave travelling 50 m s-

is approximately 5 minutes which is roughly the same as estimates of the

Brunt-Vis~illd period in the mesosphere.

Meek and Manson (1987) used a wave model to determine if the glints

could be caused by focusing along the surface of a travelling wave. The wave

model reproduced the observations of the glints well. Meek and Manson

further speculated that the waves responsible for the glints were close to their

critical levels since their phase velocities matched the parallel component of

the background wind (an instability criterion given by Fritts and Rastogi,

1985). Thus, while Meek and Manson did not directly observe gravity waves

breaking, they speculated the conditions were favorable for this occurrence..

Unfortunately, we could find no evidence of gravity wave activity in

our analysis of the data set. Power spectra of the data for each level and

antenna showed no evidence for wave activity near the Brunt-Vdisalla

frequency. To detect periods in the power spectrum out to the Brunt-V~isAlll

period required using data from the contaminated second and third files. The

problems previously discussed in detail may have prevented us from detecting

long period signals in the power spectrum.

Meek and Manson (1987) found evidence of wave activity in this data

set. Furthermore, they speculated that the waves causing the glints may be
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near saturation. While our analysis of the data set could not support this

conclusion for the reasons described above, neither could we rule it out

conclusively., This still leaves us with the unanswered question of whether or

not the presence of breaking gravity waves exists in the data set.

5.3.3.3 Invalid Lypothesis

The last reason why we may not have detected anything but noise in the

signal is that the hypothesis is invalid. Gravity wave breaking and the

subsequent decay to turbulence may not be characterized by chaotic behavior.

The analogies to laboratory studies may be incorrect or they may not extend to

the real atmosphere where there is an entire spectrum of activity besides

gravity waves. On the other hand, the hypothesis may be valid, the breakdown

of atmospheric gravity waves may be characterized by chaotic behavior but it

is of such an ephemeral nature we may not be able to detect it.,

The extension of the results from laboratory experiments to the

atmosphere may be invalid. In our review of some of the laboratory studies, we

examined chaotic behavior which arose from convective instabilities

(Rayleigh-Bdnard convection) and dynamic instabilities (Couette-Taylor flow)

in closed systems and dynamic instabilities in open systems (the excited jet).

None of these regimes are similar to the type of flow and instabilities thought

to describe gravity waves and their breakdown, although the shear

instabilities present in the excited jet are somewhat similar to one type of

dynamical instability that may occur in gravity waves. It may be wrong to

infer chaotic behavior in breaking gravity waves on this basis.

Laboratory experiments are held under tightly controlled conditions

which are very unlike those found in the atmosphere. Only one spectrum of

activity is studied making it easier to detect chaotic behavior in a fluid. Gravity

wave breaking in the atmosphere is accompanied by a wide range of other

(types of processes in the atmosphere, some of which have time scales that

overlap those of gravity waves. Detecting chaotic behavior in such a weler of
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potentially conflicting data may be nearly impossible. Furthermore, the

interaction of gravity wave breaking and other types of atmospheric motion

may eliminate any chaotic behavior that might occur otherwise.

Laboratory experiments allow for the generation of a long period of

measurements. The conditions which control the instability of the fluid flow

can be held constant allowing measurements to be made of the long term

evolution of its chaotic behavior. The flow is "continuously unstable".

Gravity wave breaking is a transient phenomenon; gravity waves

propagate upward and may become unstable and break down. A better

extension of the laboratory analogy would be a continuous source of gravity

waves which become unstable and break without modifying the basic state

flow at some level. This scenario is unlikely to ever occur in the real

atmosphere. much less at a time and place where measurements were being

made.

Chaotic behavior in gravity wave breaking may be so ephemeral that

we may never be able to detect it. Bonetti and Boon (1989) recommended a

sampling rate of 10 to 30 measurements per pseudo-period of the orbit of the

attractor. If we consider Smith's (1988) estimate of the number of points

required to accurately estimate the dimension using the Grassberger-

Procaccia algorithm for an attractor of dimension 2, and Bonetti and Boon's

estimate of the sampling rate, we must sample approxim. tely between 59 and

176 orbits to fully characterize the attractor! If we. assume that the pseudo-

period of an attractor in the breaking of gravity waves is on the order of the

Brunt-V~isIlla period (5 minutes) and a dimension on the order of 2, we would

have to make measurements for more than 6 hours., The length of time may be

even greater if the attractor were of higher dimensions which is very likely.

Six hours is practically an eternity for the phenomena we are

considering in the atmosphere. The data set would not be stationary over this

length of time and atmospheric flow regimes with longer time scales (tides,

synoptic scale activity) would contaminate the data set. This requirement
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almost certainly eliminates finding chaotic behavior in gravity wave

breaking since gravity waves that break decay to turbulence at a rate much

faster than 6 hours.
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Figure 5.1 Mutual information for antenna #1 calculated from the first

6000 points for levels 76 through 94 km,
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Figure 5.2 Mutual information for antenna #2 calculated from the first

6000 points for levels 76 through 94 km.,
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Figure 5.3 Mutual information for antenna #3 calculated from the first

6000 points for levels 76 through 94 km.
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Figure 5.4 Mutual information for antenna #4 calculated from the first

6000 points for levels 76 through 94 km.
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Figure 5.5(a)

Figure 5.5 Autocorrelation (2000 point groups) for antenna #1 for (a) 76
kmn, (b) 79 kmn, (c) 82 km, (d) 85 kin, (e) 88 km, (f) 91 km and (g)
94 km.
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Figure 5.5 (c)
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Figure 5.5 (d)
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Figure 5.5 (e)

132



Antenna #1 0<n<20
0.8 Level 91 km- 0n<20

--- 2000 <n -z 4000

0. 6 - 4000 <n < 6000

0.2

-0.2

-0.4 - I
0 50 100 150 200

Lag

Figure 5.5 (f)
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Figure 5.5 (g)
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Figure 5.6(a)

Figure 5.6 Autocorrelation (2000 point groups) for antenna #2 for (a) 76

kin, (b) 79 kmn, (c) 82 kin, (d) 85 km. (e) 88 kin, (f) 91 km and (g)

94 km.
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Figure 5.6 (c)
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Figure 5.6 (d)
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Figure 5.6 (e)
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Figure 5.6 (f)

1-

Antenna #2 __

0.8 Level=94 km 0 <n < 2000
-2000 <n < 4000

0.6 -- 4000< n < 6000

0
0

-0.2

-0.4 -
o 50 100 150 200

Lag
Figure 5.6 (g)

137



Antenna #3___
0.8 Level 76 km 0 <n < 2000

- 2000< n < 4000

0.6 -- 4000 <n < 6000

-~0.4

0t

0 .2

0 \

f -0.2

-0.4-

0 50 100 150 200

Lag

Figure 5.7(a)

Figure 5.7 Autocorrelation (2000 point groups) for antenna #3 for (a) 76

km, (b) 79 kin, (c) 82 km, (d) 85 km, (e) 88 km, (f) 91 kmn and (g)

94 km.
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Figure 5.7 (c)
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Figure 5.7 (d)
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Figure 5.7 (e)
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Figure 5.7 (f)
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Figure 5.7 (g)
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Figure 5.8(a)

Figure 5.8 Autocorrelation (2000 point groups) for antenna #4 for (a) 76

km, (b) 79 kin, (c) 82 km, (d) 85 kin, (e) 88 km, (f) 91 km and (g)

94 km.

142



Antenna #4 n<20
0.8 Level =79km0n<20

-- 2000 <n < 4000

0.6 -- 4000 < n < 6000

0

0.

-0.2

0 50 100 150 200

Lag

Figure 5.8(b)

1-

Antenna #4 0_<n_<200
0.8 Level 82 km0n<20

2000 <n < 4000

0.6 ~ -4000 < n < 6000

.. 4

0~ 0.4

00

-0.2

-0.4 j I

0 50 100 150 200

Lag

Figure 5.8 (c)

143



Antenna #4 0_<n_<200
0.8 -T Level 85 km 0nc20

-- 2000 <n < 4000

0.6 -- 4000 < n < 6000

.2

0.4

0.

<

0

-0.2

0 50 100 150 200

Lag

Figure 5.8 (d)
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Figure 5.8 (e)
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Figure 5.8 (f)

Antenna #4 0<n<20
0.8 Level 94 km0n<00

-2000 <n < 4000

0.6 ~ -4000 < n < 6000
.0

0.4

0
0 0.2 ---

-0.2

-0.4 j I

0 50 100 150 200

Lag

Figure 5.8 (g)

145



0.0
Antenna #1
Level - 76 kmn
1< n < 1500

-2.0

-4.0
0m= 2

-~-6.0 -.- m= 4

0

-8.0 -A -m= 7

-10.0 -E--m= 9
0* M =10

f/ -- A -m-11
-12.0-m1

-- . M=13

a I A--:I I -
-14.0

0 1 2 3 4 5 6 7

ln(e)

aFigure 5.9(a)
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Figure 5.10 Power spectral density for antenna #1 for (a) 76 kmn, (b) 79 kin,
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Figure 5.11 Power spectral density for antenna #2 for (a) 76 km, (b) 79 km,

(c) 82 km, (d) 85 km, (e) 88 km, (f) 91 km and (g) 94 km.
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Figure 5.12 Power spectral density for antenna #3 for (a) 76 kin, (b) 79 kin,

(c) 82 km, (d) 85 km, (e) 88 km. (f) 91 km and (g) 94 km.
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Figure 5.14 Power law fits for the power spectra from antenna #1 for (a) 76
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Figure 5.15 Power law fits for the power spectra from antenna #2 for (a) 76
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Figure 5.16 Power law fits for the power spectra from antenna #3 for (a) 76

km, (b) 79 km. (c) 79 km, (d) 82 km, (e) 82 km, (f) 85 km, (g) 88

km, (h) 91 km, (i) 91 km and (j) 94 km.
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Figure 5.17 Power law fits for the power spectra from antenna #4 for (a) 76
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CHAPTER VI

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Concuions

We did not detect a strange attractor with dimension less than three in

the data from the Saskatoon partial reflection radar for the time scales which

were studied. While we can not assert that there was only noise in the data set

because of the small number of points which were examined, the supporting

evidence from the power spectra suggest that we investigated time scales

f primarily in the viscous and inertial region and that the dimension of this

system was greater than 3.

The limited size of the data set was one of the major reasons we can

definitively rule out the presence of an attractor of only less than dimension

3. All indications are that the dominant signal was due to noise. We interpret

this noise to be isotropic three dimensional turbu,.,nce.

The difficulties in detecting a strange attractor in the saturation of

middle atmosphere gravity waves have been discussed in Chapter V. It does

seem likely that the breaking of a gravity wave (or a spectrum of gravity

waves) may be so ephemeral that limitations in the current implementation of

the Grassberger-Procaccia algorithm will prevent us from ever detecting it.

The decay to turbulence should occur quickly enough, even in the slower

slantwise static instability mechanism, that there will not be a statistically

significant number of orbits of the attractor to be useful. At least 50 orbits of

the attractor are necessary to implement the Grassberger-Procaccia algorithm.
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An even bigger consideration remains - if the attractor is so ephemeral is it

worth the trouble to study?

A similar question remains as to what a strange attractor might mean

physically. In the case of the absorption of gravity waves, it still may provide

a clue as to a mechanism by which the wave becomes unstable. As pointed out

in previous discussions, the currently accepted conceptual models for gravity

wave breaking are most likely wrong if not merely inaccurate. Detecting the

presence of a strange attractor and its dimension would provide insight into

!be route to chaos in this system and perhaps insight into the nature of the

mechanism of gravity wave saturation.

If there is an attractor associated with the nonlinear wave-wave

interaction, does this reveal anything about the mechanism behind gravity

wave saturation or just something about the particular spectrum of waves

undergoing saturation in the data set? We must be cautious in generalizing

any future results to gravity wave saturation itself.

6.2 Recommendations For Future Work

This study raises many more questions than it has definitively

answered. While it seems unlikely that an attractor will be found which

describes the transition to chaos over a short time scale in meteorological data,

more work is needed before it can be absolutely discounted. The suggestions

for further study fall into three areas: work on the technique, extenskn of

this work with better radar data and extension of this work with boundary

layer data.

The Grassberger-Procaccia algorithm and its extensions have been used

successfully in a number of different theoretical and laboratory studies of

chaotic behavior. Its weaknesses have been well studied and documented in

the literature, for the most part. We are uncertain whether this algorithm
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could detect the presence of a strange attractor in the confusing welter of

competing signals that make up a typical meteorological data set. The degree of

sensitivity of the Grassberger-Procaccia algorithm to a signal that

encompasses a wide spectrum of different types of behavior (periodic, noise

and chaotic) must be established.

The Grassberger-Procaccia algorithm must be investigated as to its

ability to detect a strange attractor amidst noise and a spectrum of periodic

signals such as are found in a meteorological data set. This investigation must

determine the relative strength of the chaotic signal that is necessary to be

detected. It also must determine the number of points needed to make it work.

This study should be extended to other middle atmosphere data sets so

that its conclusions may be confirmed. Such data sets must consist of much

longer records without the gain changes and contamination of the signal that

was found in the data used in this study. It would also be useful to employ this

technique on the radar derived winds which are closer to a truer description

fof gravity waves. The nebulous connection between the signals that are

measured by partial reflection radars and the middle atmosphere may obscure

the presence of chaotic behavior. Wind measurements deduced from the radar

signal do carry a degree of smoothing that could complicate the analysis, but

in general they will be more representative of gravity wave behavior.

Other algorithms should be used to supplement the Grassberger-

Procaccia algorithm. The improved box counting algorithm (Liebovitch and

Toth, 1989) should be examined to determine if it is a useful adjunct to the

* Grassberger-Procaccia algorithm. The nearest neighbor method of Badii and

Politi (1987) should be tried as well as some of the additional extensions of the

Grassberger-Procaccia algorithm (Franaszek, 1989: Ellner, 1988). Higuchi

(1988) has suggested an algorithm using a fractal length of curve technique

which shows promise for low (<2) dimension attractors; this might be tried as

well.
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The atmospheric boundary layer would be a logical place in which to

extend this study. Like the middle atmosphere, it is the home to unstable wave

activity that decays to turbulence (e.g., Kelvin-Helmholtz waves). The study of

turbulence in the boundary layer is also well advanced. Most importantly,

measurements of the boundary layer are of a much higher quality than those

of the middle atmosphere. Most boundary layer parameters can be sampled in

situ rather than deduced by remote sensing techniques as is commonly done in

the middle atmosphere. The amount of external noise in boundary layer data is

also much less than that for the middle atmosphere. Measurements of several

different variables can be made which help provide a better understanding of

the dynamics of an attractor if one is found. In addition, measurements of the

boundary layer can be made at much higher sampling rates and for longer

continuous periods than in the middle atmosphere.

Stationary data sets are perhaps an even greater problem in the

boundary layer than in the middle atmosphere. The boundary layer undergoes

a tremendous change during the diurnal heating cycle, exhibiting

remarkably different types of behavior between daytime and nighttime. The

boundary layer study of Tsonis and Eisner (1988) was flawed not only because

it did not consider enough points in applying the Grassberger-Procaccia

algorithm and the data set was highly non-stationary, but because it offered no

reason (i.e., physical insight) as to why there might be a strange attractor in

meteorological data over a short time scale.

There may a greater chance of finding chaotic behavior in the

structure of turbulence rather than the transition from laminar to turbulent

flow. Recent work using multi-fractals suggests that the structure of

turbulence is fractal in nature (Chhabra et al., 1989; Meneveau and Nelkin,

1989; Smith et al.. 1986). There hints of this in the work here for time scales in

the viscous region. This is another avenue for research that should be

explored.
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APPENDIX A

Appendix A contains the figures depicting the results of the correlation

integral calculations described in Chapter V for all antennas and levels. Output

from only every other embedding dimension are shown in an effort to render

the figures more legible.
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APPENDIX B

This appendix contains figures depicting the slopes of the correlation

integral calculations shown in Appendix A. The slopes were calculated using a

seven point fit as described in Chapter V. Output from only every other

embedding dimension are shown in an effort to render the figures more

legible.
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